VERGLEICHEND-ANATOMISCHE
BESCHREIBUNG
DES
KEHLKOPFS
MIT
BESONDERER BERÜCKSICHTIGUNG
DES
KEHLKOPFS DER REPTILIEN
VON
D. J. HENLE,
PROSECTOR UND PRIVATDOCENTEN IN BERLIN.

LEIPZIG,
VERLAG VON LEOPOLD VOSS.
1839.
DEM PROFESSOR

D. AR. FRIEDR. AUG. WIEGMA NN,

UNSERM HERPETOLOGEN,

MEinem FREUNDE.

Ich habe die Reptilien am ausführlichsten behandelt, weil ihre Stimmorgane noch am unvollständigsten gekannt sind, ferner weil in dieser Classe die Organe der Luftathmung zu erst auftreten und durch die verschiedenartigsten Metamorphosen zu einer Form sich heranbilden, auf welcher weiterhin nur minder wesentliche Variationen der Verhältnisse und der Gestalt der einzelnen Theile vorkommen. Die Schwimmblase der Fische mit ihrem Ausführungsgange kann man nach v. Baer's neueren Arbeiten darüber höchstens für analog, nicht aber für identisch den einfachsten Luftrespirationsorganen halten.

Henle, Beschreibung des Kehlkopfes.

Sphargis mercurialis
Chelonia cauana
" nidad
Testudo elephantopus Harlan ♀
Emys europaea
" lutescens
Cinosternon clausum
Trionyx ferox
" aegyptiacus.

2. Ordnung. Sauri.
Rhamphostoma temiroidre
Crocodilus biporcatus
Alligator lucius
" palpebrus ♀
Hydrosaurus bivittatus WAGL.
Podinecta teguixin
Ameiva vulgaris ♀
Lacerta viridis †
Chamaeleo africana♀
Calotes gutturosus ♀
" cristatus †
Draco volans
Ophryöessa superciliosa ♀
Chamaeleopis Hernandesii
Iguana tuberculata
Cyclura denticulata ♂
Anolis velifer
Polychrus marmoratus ♀ ♂
Trapelus deserti Mus. zool. ♂
Phrynocophalus auritus ♂
Tropidurus microlophus ♂
" torquatus ♀
Sceloporus torquatus ♀
Phrynosoma orbicolare ♂

Platydactylus fascicularis ♀
Hemidactylus triedrus
" armatus NEUW. †
Gymnodactylus platyrurus WAGL.
Zonurus cordylus ♂
Pseudopus serpentinus †
Ophisaurus ventralis
Euprepeia Telfairii ♂
Cyclodus flavigularis WAGL ♂
Zygnis chalcidica
Anguis fragilis †
Amphisbaena fuliginosa †
Cephalopeltis Hemprichii.

Typhlops amphizaranthus
Ilysia scytale
Cylindrophis maculata
Eryx turcicus
Boa constrictor
Python bivittatus
Coluber rufiventris
" flavescens
" Korros
" pholidostictus WIEGM.
" capitatus
" (Spilotes WAGL) pullatus
" (Helicops WAGL) angulatus
" (Thamnodynastes W.) Nattereri
" (Phyllodryas W.) Olfersii
" rufescens Gm. (n. g. Cleliae af. fin. WIEGM.)
" (Homalosoma WAGL) aretiiven-
" (Liophis) reginae
" cobella
Coluber (Liophis) miliaris
 " poecilogyrus
Dendrophis haactulla Boje
Herpetodryas carinata
Coronella laevis
Tropidonotus natrix
 " melanozostus
 " sp. n. americ. ♀
Homalopsis aër
 " thalia
Dipus annulatus ♂
 " nebulatus
 " bucephalus
Coelopeltis lacertina
Psammophis moniliger
Dryophis prasinus
Hydrophis trigonocephalus
Elaps lacteus ♂
 " lemniscatus
Naja tripudians
 " haje
Bungarus fasciatus ♂
Vipera berus
Lachesis Yararaka
Crotalus horridus
 " durissus

Pipa verrucosa ♀♂
Xenopus Bojei ♀♀
Ceratophrys granulos ♀

Hyla punctata ♀
 " venulosa ♀
 " Squadron ♀
Rana temporaria ♀
 " esculenta ♀
 " mugiens L. (?) ♀
 " n. sp. principal affinis ♀
Discoglossus pictus Otth. ♀♀
Bomblator igneus ♀♀
Alytes obstetricans
Pelobates fuscus
Engystoma gibbosum Cuv.
Microps Bonapartii Fitz. ♀
Bufo cinereus ♀♀
 " calamita ♀
 " palmarum
 " variabilis
 " marinus ♀ *
Salamandra maculata ♀
 " nigra ♀
Triton cristatus
 " igneus
 " marmoratus
Abranchus alleghanensis ♀
Amphiuma didactylum
Siredon pisciformis
Menobranchus lateralis HARL. ♀
Proteus anguinus ♀
Coeelia glutinosa
 " tentaculata
Lepidosiren paradoxa ♀.

Was die Beschreibung betrifft, so ist noch zu erwähnen, dass bei der Angabe der Regionen die Thiere in einer Lage gedacht sind, welche derjenigen entspricht, in welcher man den menschlichen Körper bei den anatomischen Darstellungen zu denken gewohnt ist, also aufrecht auf den Hinterbeinen; die Bauchfläche ist alsdann nach vorne, die Rückenfläche nach hinten, das Kopfende nach oben, das Schwanzende nach unten gekehrt. Da wir bei allen anatomischen Beschreibungen den menschlichen Körper als Norm festzuhalten pflegen, so ergibt sich auf diese Weise, wie ich glaube, die Analogie am bequemsten.

* Unter diesem Namen sind die Eingeweide einer grossen Kröte im hiesigen Museum aufgestellt.
Die Luftrespirationsorgane sind, ihrer einfachsten Form nach, eine Ausstülpung der Mundhöhle in einen unpaaren Canal, der sich in zwei blinde Säcke endet. Er entsteht aus der Mundhöhle unter dem Zungenbein oder hinter denselben. Der einfache Canal, ich will ihn Stimmlade nennen, sondert sich bei weiterer Entwicklung in Kehlkopf und Luftröhre, jeder der beiden blinden Säcke in einen obern engern Theil, Bronchus, und einen blasenför- migen, die eigentliche Lunge, die wieder durch Vorsprünge im Innern der Blase und durch manngattige Verzweigungen dieser Vorsprünge aus einem einfachen Sacke sich zur dresen- artigen Lunge metamorphosirt. An der Bildung der Bronchi kann aber auch die Stimmlade selber Theil haben. Man denke sich die untere Wand derselben zwischen den Öffnungen, wodurch sie in die Lungen übergeht, etwas eingebohren, zurückweichend (s. die schemat. Figur Taf. II. 25), so entstehen aus dem einfachen Canal zwei getrennte Röhren. Man kann sich also die Bronchi vorstellen, eben so wohl auf Kosten der Stimmlade, als auf Kosten der Lungen gebildet und in vielen Fällen mag beides zusammentreffen.

Man denke sich an einem menschlichen Kehlkopf die Giessbeckenknorpel von einander getrennt durch einen senkrechtenu Schnitt, welcher bis auf der Rand des Ringknorpels herab alle die Giessbeckenknorpel verbindenden Muskelfasern, die Schleimhaut etc. theilt. Dadurch würde man auf jeder Seite eine Falte erhalten, welche von der Epiglottis bis zum Ringknorpel ginge. Ich nenne sie Plica aryepiglottica. (Fehlt die Epiglottis oder geht die Falte

Diese vorläufigen Bemerkungen werden hinreichen, um zu beweisen, dass die gewöhnlich sogenannte Glottis der Reptilien und Vogel einerseits, und die Glottis der Säugethiere und der Menschen anderseits ganz verschiedene Dinge sind. Ich will daher jene Spalte, die sich zwischen den obern Rändern des Giessbeckenknochel befindet, im Folgenden den Eingang des Kehlkopfs oder der Stimmlade, *Aditus laryngis* nennen; die Knorpel oder Bänder, die diesen Eingang begrenzen, sollen Ränder des Einganges zum Kehlkopf oder zur Stimmlade heissen. Bei den Säugethiern sind es die *Ligamenta aryepiglottica*.

Die Wände der Respirationshöhle bestehen, wie die der Speiseröhre, aus welcher sie sich bilden, aus einer innern Haut, Schleimhaut, und einer äusseren, zelligen, bald mehr fibrösen, bald musculösen. Bei *Lepidosiren* enthalten sie keine Spur von Knorplan. * Es befindet sich bei diesem Thiere unmittelbar unter dem Zungenbein in der Basis der Mundhöhle ein platter, zungenförmiger Knorpel, an dessen unterem Rande eine feine Längsspalte, der

Stimmnadeneingang, liegt. Dieser führt in eine lange, cylindrische Röhre, aus welcher unmittelbar die parenchymatösen Lungen entstehen. Die Ränder der Spalte erhalten zwei Muskeln, der erste, der an dem Exemplar, welches wir untersuchten, aussen abgeschnitten war, konntet wahrscheinlich von der Wirbelsäule. Er breitet sich gegen die Mittellinie des Körpers hin fächerförmig aus und geht zum Theil an die Seitenränder der Spalte, zum Theil an den genannten zungenförmigen Knorpel, zum Theil endlich vor diesen her mit Fasern des gleichnamigen Muskels der andern Seite zusammen. Er ist Öffner oder Erweiterer des Stimmnadeneingangs. Der zweite Muskel liegt unter diesem, d. h. der Bauchfläche näher. Er besteht aus longitudinalen Fasern, die vom untern Rande des zungenförmigen Knorpels kommen und die Spalte herumgehen, ist also Schlüssel oder Verenger der selben.

B a t r a c h i e r.

Knorpel der Respirationssorgane.

Proteus anguinos.

* Eine ausführliche Beschreibung dürfen wir bald von Herrn Prof. Bischoff in Heidelberg erwarten, dessen Güte ich die Gelegenheit, dies selte Thier zu sehen, verdanke.

** Vergl. die genaue Beschreibung bei Configliachi e Resconi, *del proteo anguino di Laurentii*. p. 78. Tab. III. Fig. 1 u. 4. — Schröbcrs in Philosoph. Transactions. 1801. p. 257. Tab. XVII. Fig. 2. 3. Resconi gedenkt schon der Knorpel am obem, engern Canal der Stimmhülle.
eine Strecke weit frei, und nach unten concav der Rand der Stimmlade (Taf. I. Fig. 17.). Der Knorpel der Seitenwand besteht jederseits aus zwei ganz getrennten und mehr oder we- niger von einander abstehenden Stücken; das obere, der Pars arytaenoidea bei Proteus entsprechen, nennt ich Cartilago arytaenoidea, das untere, der Pars laryngo-trachealis des Proteus analoge, Cartilago laryngo-trachealis, oder, der Kürze wegen, C. la- teralis, Seitenknorpel.

Die Cartilago arytaenoidea, Gießbeckenknorpel, ist dreieckig, mit geradem vorderem, Form der schiefen hinteren Rande bei Triton marmoratus (Fig. 13.), keulenförmig, mit nach oben ge- richteter Spitze, nach unten und hinten sich krümmendem breitem Ende bei Triton igneus (Fig. 14.), stumpfwinklig dreieckig, mit vorderem und hintern schiefen Rande, den stumpfen Winkel nach oben gekehrt, bei Salamandra atra (Fig. 18.), viereckig, mit wenig abgerande- ten oberem Winkeln bei Salamandra maculata (Fig. 16.), dreieckig, mit abgerundeter Ober- Spitze, aber zugleich in eine Hohlkehle gekräumt, deren Rinne gegen die Stimmladenhöhe sieht, bei Triton cristatus (Fig. 15.).

Die Cart. lateralis fand ich breit und platt bei Triton marmoratus und cristatus, bei dem ersteren sieht man in der oberen Hälfte eine der Länge nach verlaufende, hervorragende Knorpelleiste (Fig. 13.); ihr oberes Ende ist abgerundet, das untere spitz, die Seitenränder drei- bis viermal ganz leicht eingekehrt. Bei Salamandra maculata ist derselbe Knorpel schmaler und länger, mehr rinnenförmig, die Einkerbungen der Seitenränder regelmässiger und tiefer, der untere Theil in einige Spitzen verlängert (Fig. 16.). Die Einkerbungen werden zu wirklichen Ausschnitten bei Salamandra atra und bei Triton igneus, so dass die Cart. lateralis die Gestalt eines schmalen longitudinalen Knorpelstreifens mit kürzeren oder längern querlaufenden Asten erhält (Fig. 14. 18.). Bei dem genannten Triton war vom oben Theil ein rundliches Knorpelstückchen gänzlich abgetrennt, bei Sal. atra kamen noch in der Lunge einzelne, isolirte Querstreifen vor (Fig. 18. v.).

Sehr ähnlich der Stimmlade der Sal. maculata ist die des Siredon pisciformis (Taf. I. Fig. 4.). Sie ist aber noch mehr von vorn nach hinten plattgedrückt, mit scharfen Seitenrändern, welche zum grössern Theile parallel und gerade verlaufen, und erst nahe am hinteren Ende der Stimmlade rasch auseinanderweichen. Die Gießbeckenknorpel (Fig. 6. f) sind fast gleichschenklige, spitzwinklige Dreiecke, deren Basis einen Theil des Randes der Stimmritze unterstützt, während die Spitzen nach vorn geneigt sind, und hier von beiden Sei- ten fast zusammentreffen. Der grössere obere Theil der Stimmritzenränder ist nur häu- fig. Jede Cartilago lateralis (Fig. 6. h) besteht aus zwei schmalen Längsstreifen, die nach aussen in einen scharfen Rand zusammenfallen, deren einer der vorderen, der andere der hin-

* Bronchi semilartilaginoci sagt FUNK (de Salamand. terresr. vita etc. p. 21.)
* MECKEL (vergleichende Anatomie Bd. III. p. 443.) hat sie bereits beschrieben.
tern Wand der Stimmlade angehört. Ihre innern Ränder zeigen ganz schwache Einkerbungen in regelmässigen Abständen von einander. Bei Siredon sehen wir auch schon eine Spur von unterer Glottis, indem die untern Ränder der Giessbeckenknorpel einen Vorsprung in die Hülle des Kehlkops bilden (Fig. 7. s).

Menobranchus lateralis hat eine ganz cylindrische Stimmlade, ans deren untern Theil die Bronchien dicht nebeneinander, nur durch eine häutige Scheidewand getrennt, entspringen. Die Knorpel derselben sind äusserst fein und nicht leicht zu isoliren; die **Cart. urytaenoidea** ist viereckig, wie bei Salamandra atra, der Seitenknorpel der Stimmlade scheint ebenfalls dem der Salamandra atra ähnlich, platt und schmal.

Die Stimmlade der genannten Reptilien, die wir demnach als Kehlkopf und Luftöhre zugleich, vor ihrer Sonderung, betrachten, entspricht in Form und Proportionen allerdings eben so sehr dem Kehlkopf, als der Luftöhre höherer Thiere. Von hier aus aber entwickelt sich, je nach der Gestalt der einzelnen Gattungen, das Organ nach zwei Richtungen, so dass es bei den langgestreckten und geschwänzten Batrachiern mehr einer Luftöhre ähnlich wird, bei den ungeschwänzten mehr die Analogie mit dem Larynx hervortritt. Man hat den letzteren deshalb ziemlich allgemein die Luftöhre abgesprochen. In der That aber ist ihr Kehlkopf eben sowohl zugleich Luftöhre, als die Luftöhre der geschwänzten Batrachier zugleich Kehlkopf ist.

Vergleicht man zunächst Amphiuma (Taf. I. Fig. 8. 9.) mit Siredon, so findet man die Giessbeckenknorpel in Lage und Gestalt vollkommen gleich. Die Stimmlade ist luftähnlich, indem die Länge noch mehr, als bei Siredon, den Querdurchmesser überwiegt, indem die Erweiterung am untern Ende noch weniger auffallend ist und indem, ähnlich wie bei Menobranchus, die Lungen dicht nebeneinander unmittelbar aus dem untern Ende der Stimmlade entspringen. Entsprechend der Länge der letzteren, ist auch die **Cartilago lateralis** der beiden Seiten länger und verhältnissmässig schmaler geworden; jeder dieser Knorpel ist auch hier rinnenförmig, doch mit minder scharfen äussern Rand, und demnach ist die Höhle der Stimmlade weniger deprimirt, sondern cylindrisch. An den Einkerbungen oder Vorsprüngen, wie man will, der innern Ränder des genannten Knorpels lässt sich die Tendenz zur Bildung von Ringen nicht vernehmen. Diese spricht sich noch deutlicher aus in der Stimmlade von Menopoma (Taf. I. Fig. 10. 11.). Man hat hier, wenn man die vordere Fläche (10.) und die hintere (11.) vergleicht, ein vollkommenes Bild der allmäig fortschreitenden Entwicklung der **Cartilago lateralis** zu Trachealingen, welche aber vollendet erst bei Coecilia erscheinen.

Menopoma.

Die Verhältnisse der Stimmlade von Menopoma gleichen ungefähr denen von Amphiuma, nur sind die Giessbeckenknorpel, wovon sogleich die Rede sein soll, deutlicher abgesetzt und mehr entwickelt; die **Cartilago lateralis** besteht wieder jederseits aus zwei Hälfiten, einer vorderen und einer hintern, die in einen mässig scharfen Rand ausren zentrennial zusammenstossen. Die vordere und hintere Hälfte sind aber nicht gleich. Vorn sind die Leisten schmal, so dass zwischen ihnen die Hälfte der Lade bloss hängt bleibt, sie zeigen kaum hier und da eine Spur von Einkerbung. An der hintern Wand sind die Knorpel unten zwar auch schmal, aber schon mit kurzen, schmalen, queren Fortsätzen versehen. Die fibröse Haut, welche den Raum zwischen denselben ausfüllt, hat ebenfalls schon abwechselnd hellere und

Die höchste Entwicklung erreicht die Cartilago lateralis unter den nackten Reptilien bei Coelicia, wie deren Stimmlade am meisten nach Art der Trachea höherer Thiere gebildet ist (Taf. 1. Fig. 2). Auch hier ist die Verknorpelung der hinteren Wand viel stärker, als die der vorderen. Die Knorpel beider Seiten treten an obem Theile der hinteren Wand zu einer Platte zusammen, wie bei Menopoma, in welcher sich weiter nach unten erst unregelmässige Lücken, dann regelmaessige Querstreifen zeigen. So sind also halbe, hintere Luftröhrenringe gebildet, die längs den Seiten nur noch durch longitudinalen Knorpelstreifen continuirlich zusammenhängen und über diese hinaus noch etwas auf die vordere Wand der Stimmlade herumreichen, sonderbarer Weise auf der rechten Seite weiter als auf der linken. Vielleicht ist diese Assymetrie mit der ungleichen Entwicklung der Lungen in Beziehung, von denen nach J. Mueller ** und Mayer *** die linke nur rudimentär ist; indessen ist bei den Schlangen, deren Lungen doch ebenfalls ungleich gross sind, keine Verschiedenheit in der Verknorpelung der beiden Seiten der Trachea zu bemerken. Weiter gegen die Lungen hin schwinden zuletzt auch noch die longitudinalen Verbindungsstreifen zwischen den queren Halbringan, so dass diese gänzlich von einander isolirt erscheinen.****

So haben wir gesehen, wie halbe Trachealringe aus dem paarigen Knorpelstreifen der Stimmlade entstehen, und zwar so, dass zuerst diese Knorpel quere Aeste nach innen schik-

*** Analekten für vergleichende Anat. p. 61.

**** Ähnliche Luftröhrenknorpel und Ringe scheidt Siren lacertina zu besitzen, wie Meckel angiebt (Archiv. 1819. p. 214.) und ich an einem aufgestellten Präparate im Hunter'schen Museum sah. Ich konnte trotz vieler Beobachtungen kein Exemplar dieses Thiers zu genauerer Untersuchung erhalten. Cuvier, welcher die Knorpelringe der Luftröhre Langnet (Recherches anatomiques sur les reptiles doux, in v. Humboldt und Bonpland observations de zoologie et d'anatomie comparée. p. 107.); giebt doch in der Abbildung pl. XI. Fig. 3. eine Andeutung derselben. Von Kelikopf heisst es daselbst: dans son intérieur se voit de chaque côté une très légère saillie cartilagineuse, et entre eux est la glotte, mais il n'y a point de ruban vocal en forme de lame tranchante.

Henle, Beschreibung des Kelikopfs.
ken, dass diese Äste von beiden Seiten zusammenstossen und verschmelzen, dass endlich die longitudinal laufenden Partien der Knochelleiste verschwinden.

Wenden wir uns nun nach den in entgegengesetzter Richtung sich ausbildenden Stimmbändern, die schwanzlosen Batrachier, und zuerst zu den Giessbeckenknorpeln.

Ganz regelmässig stumpfwinklig und gleichschenklig ist die Cartilago arytaenoida Gestalt der-
bei Microps Bonapartii (Taf. I. Fig. 38.), Bominator igneus (Fig. 36.), Hyla ven-
lora und Sceleton und Ceratophrys granulosus (Fig. 56.); ziemlich gleichzeitig bei Disco-
glossus (Fig. 39.) und Alytes obstetricans. Der Giessbeckenknorpel von Bufo cinereus
(Fig. 25. 26.) ist mehr spitzwinklig und die Spitze etwas nach hinten geneigt, dadurch die
vordere Seite stärker convex, die hintere concav; der umgekehrte Fall kommt bei Pelobates
fuscus vor (Fig. 30.), wo zugleich die obere Spitze stärker als gewöhnlich abgerundet ist.
Bei Bufo palmarum steigt die hintere Seite gerade herab und der hintere Winkel ist fast
ein rechter (Fig. 22.). Bei Hyla punctata (Fig. 54.) ist der obere Winkel fast ver-
schwunden; vordere und hintere Seite beschreiben zusammen eine Curve; der ganze Knorpel
stellte die Hälfte einer der Länge nach geteilten Eischale dar mit zwei kleinen Vorsprüngen,
entsprechend dem vorderen und hinten Winkel. Bei Engystoma gibbosum (Fig. 33.) feh-
len diese beiden Winkel und der vordere und hintere Rand gehen continuirlich in den untern
Rand über u. s. w.

Häufig kommt es vor, dass die Concavität der inneren Fläche einem Kreisbogen mit
kleinem Durchmesser angehört, als die Convexität der äusseren Fläche, oder dass selbst die
letzteren in ihren oben Theile nach aussen concav wird. Dadurch ist ein Theil der einan-
der zugewandten Flächen beider Giessbeckenknorpel, und zwar der obere Theil, plan und die
Aushöhlung beginnt mit scharfem Rande erst tiefer unten in der Stimmlade. So verhält es
sich bei Bufo palmarum, Engystoma gibbosum, Rana n. sp. und Hyla punctata
(s. Fig. 23. 33. 54.). Als eine Eigenthümlichkeit, die ich nur bei dieser letzter Species
fand, erwähne ich noch einen Vorsprung an der innern Fläche der Cart. arytaenoida, der
wie eine stumpfe Leiste von oben Winkel zur Mitte des untern Randes herabgeht und die
Wölbung des Knorpels in zwei Felder theilt. Diesem Vorsprung entspricht eine Furche an
der äussern Fläche des Knorpels.

Bei Engystoma (Fig. 33.) ist die obere Spitze des Giessbeckenknorpels durch einen
sehr kleinen Ausschnitt in zwei kurze Zacken geteilt. Einen ähnlichen, aber grössern, nament-
lich breitern, halbmondförmigen Ausschnitt haben unsere Frösche (R. temporaria und escu-
lenta). Den Raum zwischen beiden Zacken füllt aber hier ein eigenthümliches, plattes Knor-
pelchen aus. Es ist dreieckig mit nach unten gerichteter Spitze bei R. temporaria, länger, CartilagoSan-
toriniana. Den Raum zwischen beiden Zacken füllt aber hier ein eigenthümliches, plattes Knor-
pelchen aus. Es ist dreieckig mit nach unten gerichteter Spitze bei R. temporaria, länger, CartilagoSan-
toriniana. Bei keinem Reptil habe ich einen ähnlichen, getrennten Knorpel an der
Spitze des Giessbeckenknorpels gefunden; dagegen liegt die Analogie mit der Cartilago San-
toriniana der Säugethiere sehr nahe und ich glaube nicht zu fehlen, wenn ich ihn mit dem-
selben Namen bezeichne. *

Entsprechend den untern Rändern der Cartilagines arytaenoidae und als Stützen Cartilagines

* Martin St. Ange hat diesen Knorpel v. R. temporaria beschrieben und abgebildet (Annales des sciences
naturelles. T. XXIV. p. 419. Pl. 26. Fig. 4. 5.).

2°
Proteus die Seitenwände der Stimmlade bilden hilft, sahen wir quere Fortsätze, Leisten, entstehen, die sich endlich bis zu Trachealringen entwickelten. Solche Querfortsätze am oberen Rande des Seitenknorpels sind es, die bei den Batrachiern zum ringförmigen Knorpel sich umbilden, auf dem die Giessbeckenknorpel ruhen. Bei Discoglossus (Fig. 39.) sind beide Seitenknorpel noch unverbunden, jeder hat die Gestalt eines Hammers, dessen Kopf vom vorderen und hinteren Querast, dessen Stiel vom ursprünglichen, longitudinalen Theile der Cart. laryngo-trachealis gebildet wird. Bei Pelobates (Fig. 28. 29.) haben bereits die vorderen Queräste zu einer zusammengängigen Platte verbunden, an der Rückseite aber ist die Verbindung nicht erfolgt, der ringförmige Knorpel ist hinten offen, wie die Trachealknorpel des Menschen; umgekehrt sind bei Ceratophrys (Fig. 56.) die hintern Querfortsätze des Seitenknorpels zu einer soliden Platte verschmolzen, während die vorderen Querfortsätze zwar nicht mehr getrennt, aber doch sehr schlank und schwach sind. Bei allen andern Batrachiern ist die Verbindung der oberen Querfortsätze zu einem Ringe hinten und vorn vollständig, und es besteht sonach der Knorpelapparat der Respirationsorgane, ausser den Giessbeckenknorpeln, aus einem einzigen Stücke, dieses wieder aus einem ringförmigen Theile und zwei longitudinalen, absteigenden Seitenfortsätzen.

Bei Microps (Fig. 37.) und Bombinator (Fig. 34. 36.) machen die Seitenknorpel, in ihrer ganzen Länge vereinigt, einen breiten, festen, platten Ring aus, an welchem bei Bombinator nur zwei kurze, spitze Fortsätze nach unten die Stelle des longitudinalen Theiles der Cart. laryngo-trachealis vertreten (Fig. 36. 2.).

Erwägt man nunmehr die unverhältnissmässige Grösse der Giessbeckenknorpel bei den schwanzlosen Batrachiern, so dass sie fast die Hauptmasse des Respirationsapparats bilden, wogegen der übrige unpaare Theil desselben nur unbedeutend erscheint, erwägt man, wie auch dieser noch zum Theil zur Bildung der Bronchien verwandt wird, so erklärt sich leicht, warum behauptet wird, dass bei den Batrachiern die Luftrohre gänzlich fehle und aus dem Kehlkopf unmittelbar die Bronchialäste entspringen.*

Ich habe noch einige Verschiedenheiten in der Entwicklung des Laryngotracealknorpels bei den Batrachiern anzuzeigen.

Der ringförmige Theil desselben ist selten im ganzen Umfange gleich hoch; meistens ist der hintere Theil desselben höher und reicht weiter nach abwärts in Form einer drei- oder fünfeckigen oder abgerundeten Platte, deren Spitze nach unten sieht. Der Unterschied ist gering bei Bufo eisenius, Engystoma und Rana n. sp. (Fig. 25 und 26, 32, 49.), bedeutender bei Ceratophrys und Alytes, wo dem Vorsprung des untern Randes entsprechend der obere etwas eingebogen ist (Fig. 56.), am auffallendsten bei Bufo palmarum (Fig. 22.).

Bei Rana temporaria (Fig. 46—48, z') steigt von dem mittlern untern Theil des hinteren Randes ein schmaler, dreieckiger, allmählich sich zusitzender Fortsatz nach unten und etwas gekrümmt nach vorn, so weit, dass er zwischen den Bronchialästen zum Vorschein kommt, wenn man die Stimmhale von vorn betrachtet. Bei Hyla (Fig. 53, z') verhält es sich ähnlich, aber der obere Rand des ringförmigen Knorpels bleibt dem unteren Rand parallel, der Knorpel ist also nicht breiter, bildet aber hinten einen nach unten vorspringenden Winkel. So auch bei Rana esculenta (Fig. 43.).

Der obere Rand des ringförmigen Knorpels ist bei einigen Batrachiern durch Fortsätze ausgezeichnet, die platter sind als der Knorpel selbst, die den Muskeln zur Anheftung und den Giessbeckenknorpeln nach aussen gleichsam zum Anlehen dienen. Einen breiten, abgerundeten Fortsatz jederseits an der vorderen Fläche haben Pelobates, Rana esculenta und Hyla (Fig. 28, 41, 52, z'), bei Rana temporaria (Fig. 46—48, z') ist dieser vordere Fortsatz länger und schmaler, und ausserdem kommt ein ähnlicher Fortsatz an den Seitentheilen der hinteren Fläche des ringförmigen Knorpels vor (Fig. 47, 48, z'); endlich besitzt diese Species, so wie Bufo, auch noch einen kurzen, queren Seitenfortsatz, wodurch der ringförmige Knorpel mit der Columella des Zungenbeins zusammenhängt (Fig. 21, Fig. 46—48, z').

Was die seitlichen, absteigenden Theile des Laryngotracealknorpels betrifft, so fehlen sie, wie bereits bemerkt, bei Microps ganz und gar, bei Bombinator sind sie kaum ange deutet; einfach und platt oder cylindrisch sind sie bei Discoglossus (Fig. 39, z), Pelobates Cartilago laryngotraceals, Alytes, bei den 3 Arten von Hyla (Fig. 52, z), bei Rana n. sp. (Fig. 50, z) und Rana temporaria (Fig. 46—48, z); sie gehen entweder fast gerade oder nach aussen, oder nach innen geneigt herab, oder sie krümmen sich etwa in der Hälfte ihres Verlaufs plötzlich in einen stumpfen Winkel nach innen (Fig. 50.). Ein Anfang von queren Fortsätzen, als Rudiment von Trachealingen, zeigt sich, namentlich gegen die untere Spitze bei Ceratophrys (Fig. 56.) und Rana esculenta (Fig. 40, z), deutlicher bei Engystoma und bei den Kroeten; hier wird der Endtheil zu einer unregelmässig gestalteten, länglichen oder rundlichen Platte (Fig. 19, 26, 31, z). Eine Ähnlichkeit mit wahren Bronchialringen kommt indess erst bei den zungenlosen Batrachiern vor. Bei Pelobates, Bombinator, Rana und Hyla reicht das Knorpelgerüst nicht über den unpaaren Theil des Respirationsorgans, die Stimmlade, hinaus, bei Pseudes und Bufo erstrecken sich die seitlichen, absteigenden Fort-

* Dieser Theil des ringförmigen Knorpels ist es, dem Ratheck (Untersuchungen über den Kiemenapparat und das Zungenbein der Wirbeltiere etc. Taf. IV. Fig. 8, c) in seiner Verbindung mit dem Zungenbein abgebildet hat, als „einen Knochen, der sich unterhalb des Kehlkopfs gebildet hat und nicht zum Zungenbein gehört."
sitzt über einen oberen engern Theil der Lunge, gleichsam den Hals derselben, bei *Engystoma* (Fig. 31.) reichen sie bis über die Mitte des Lungensackes nach unten.

Eine interessantere Eigenthümlichkeit zeigen die Stimmbladenknorpel von *Engystoma gibbosum* und *Rana esculenta*. Die absteigenden Aeste derselben sind bei jenem nämlich am untern Rand der vorderen Fläche der Stimmblase durch eine einfache, dünne, quere Knorpelleiste verbunden, so dass die vordere häufige Wand der Stimmblase wie unter einem vierckigen Rahmen ausgespannt ist (Fig. 31. μ). Dasselbe Verhältniss findet sich bei *Rana esculenta*, aber hier ist der quere Verbindungsstreifen (Fig. 40. 41. 43. μ) in einem stumpfen, nach unten offenen Winkel gebogen, und von der Spitze des Winkels entspringt nach hinten und oben eine kurze, gabelförmig gespaltene Platte, die im Boden der Stimmblase liegt, und mit der hintern, absteigenden Spitze des ringsförmigen Knorpels fast zusammenstösst; ein kurzes festes Band verbindet beide. Die Lungen treten aus über diesem unterm Querstreifen und also aus den Seitenwänden der Stimmblase, und ihrer Ursprung umgeht ein Knorpelbogen, der nur auch unten nicht ganz geschlossen ist. *Bufo palmarum* hat als Rudiment der erwähnten untern Verbindungseleisten ein paar ganz feine unregelmässige Knorpelfäden, die am untern Rande der Vorderfläche der Stimmblase einander entgegenkommen (Fig. 19. α). Ein paar ähnliche Fäden kommen auch von der hintern untern Spitze des ringsförmigen Knorpels und laufen an der hintern Fläche der Bronchien herab (Fig. 20. α).

Bei den geschwänzten Batrachien liegt der Anfang des Respirationscanals mit seinen Knorpeln in dem Raum zwischen den beiden hintersten Bogen des Zungenbeins, ohne jedoch mit diesen anders, als durch die Muskeln verbunden zu sein. Eigenthümliche Bänder kommen nicht vor, noch weniger ein Zusammenhang der Stimmbladenknorpel mit den Knorpeln des Zungenbeins. Meistens ist auch die Entfernung der Zungenbeinhöhlen von der Stimmblase ziemlich bedeutend. Eine Ausnahme macht nur Coecilia. Sie hat 4 Paar Zungenbeinhörner, von denen die beiden vordern durch einen longitudinalen Knorpel, die beiden hinteren unmittelbar in der Mittellinie zusammenstossen, und gleichsam als Anhang des vierten Paars noch ein fünftes kleineres (Fig. 1. e'). Jedes Horn dieses letzten Paares ist aussen durch ein Ligament an die Spitze des vorhergehenden Bogens seiner Seite befestigt, reicht aber nach innen nicht bis zur Mitte und zum entsprechenden Bogen der andern Seite, sondern endet frei und abgerundet. Dieses fünfte Horn liegt vor dem Anfang der Stimmblase und scheint einen Theil derselben auszu machen. Doch ist auch dies nur durch schlaffes Zellgewebe an die vordere Wand der Stimmblase befestigt, und nimmt keinen Antheil an der Bildung derselben. Anders verhält es sich bei den ungeschwänzten Batrachien. Hier fällt die Stimmblase den dreieckigen Raum, zwischen den hintersten, knöchernen Zungenbeinhörnern vollkommen aus, und ist an dieselben immer wenigstens durch kurze Bänder befestigt, deren jederseits eins vom ringsförmigen Theil der *Catilago laryngo-trachealis* entspringt. Bei *Alytes obstetricans*, *Bufo cinereus*, *Rana esculenta* und *temporaria* aber ist der letzte genannte Knorpel in der That

© J. MÜLLER (in dessen Archiv 1835. p. 391. Taf. VIII. Fig. 12—14.), welcher in dem Zungenbein des Fötus alle fünf Paare gesehen und abgebildet hat, vermisst deshalb das fünfte Paar beim erwachsenen Thiere. Die Knorpelplatte, welche derselbe (TIEMANN's Zeitschr. Bd. IV. Heft 2. p. 219. Taf. XVIII. Fig. 6.) hinter dem vierten Zungenbeinhöhlen der *C. glutinosa* gesehen hat, ist dagegen wahrscheinlich die Stimmblase selbst.
continuierlich mit der knorpeligen Epiphyse des letzten Zungenbeinhorns verschmolzen, so dass eine Trennung nur künstlich zu bewirken ist.

Wirft man einen Blick z. B. auf Fig. 26. von *Bufo cinereus*, oder auf Fig. 40. von *Pipa* und *Xenopus*. Annäherung der Zungenbeinbogen einmal, ihrer ursprünglichen Bestimmung entgegen, auf die Seite der Stimmgänge übergehen könnten, und ich darf gestehen, dass es mich nicht überraschte, als ich bei *Pipa* und *Xenopus* diese Verbindung ins Werk gesetzt fand. Die Zungenbeine dieser merkwürdigen Gattungen bieten noch einige andere Abweichungen von der gewöhnlichen Form dar.

An dem *Os hyoides* der ungeschwänzten Batrachiern kommen bekanntlich jederseits vier Fortsätze oder Bogen vor. Am ausgezeichnetsten sind der obere und der untere (sonst vordere und hintere) Bogen, jener durch seine Länge und weil er gewöhnlich mit dem Schädel articulirt, dieser, die *Columella*, durch seine constante Form und Verknöcherung. Er allein ist gewöhnlich durch eine Sutur vom übrigen Zungenbeine abgesetzt, er ist verknöchert, wenn alle übrigen Theile knorpelig sind, und trägt nur an der untern freien Spitze eine knorpelige Epiphyse. Gewöhnlich stellt er ein gerades oder wenig gebogenes plattes Stäbchen dar, welches schief von oben und innen nach unten und aussen verläuft. Zwischen dem obersten Horn und der *Columella* liegen noch zwei kürzere platte Fortsätze von weniger bestimmter Form, der erste derselben, im Ganzen der zweite, meist breiter, kürzer und abgerundet, der dritte länger und spitzer. Beide sind bei *Alytes obstetricans* zu einer einzigen, breiten Platte verschmolzen; sie befinden sich getrennt beim Frosch, seitlich an der Zungenbeinplatte (Fig. 42. c. d.); bei *Pseudes* ist das zweite Horn an das erste hinaufgerückt; bei *Bufo* bildet es nur einen unbedeutenden Fortsatz, am untern Rande des obersten Hornes, nahe dem Ursprunge desselben (Fig. 19. 24. c.), bei *Bombinator* endlich ist es mit dem obersten Horn zu verschmolzen, dass dies dadurch an der Wurzel nur breiter erscheint, dagegen ist auch das dritte Horn des Zungenbeins von *Bombinator* verknöchert (vergl. Fig. 34. c. d.). Schon dadurch ist der Längsdurchmesser der Zungenbeinplatte sehr reducirirt. Mehr noch ist es der Fall bei *Hyla silvatica* (Fig. 51.), wo sowohl das zweite als dritte Horn, als schmale Fortsätze, dem ersten aufsitzen und also kaum ein freier Seitenrand des Zungenbeinkorpers übrig ist. Mit diesen Formen vergleiche man nun das Zungenbein von *Xenopus Bojei* und *Xenopus Rojei*, welches in seiner unzertrennlichen Verbindung mit der Stimmlade auf Taf. II. Fig. 1. dargestellt ist. Hier ist der Körper des Zungenbeins noch mehr gegen die Fortsätze oder Hörner zurückgetreten. Es ist nur die mittlere Platte (a) übrig, an deren obern Rande die obern Hörner (bb), an deren untern Rande die *Columellae* (e) entspringen. Nur ein kleiner ausgeschiefer Theil des Seitenrandes des Zungenbeinkorpels ist frei und auch der untere Rand ist durch Verschmelzung mit der Stimmlade weggefallen. Die obern Hörner steigen in einem Bogen nach aufwärts, indem sie sich erst von einander entfernen, dann wieder einander nähern und in der Mittellinie zu einem unpaaren Stück verschmelzen. Auf diese Art schliessen sie eine ovale Öffnung (+) ein, durch welche die *Musculi hyoglossi* von aussen nach innen treten, um sich im Boden der Mundhöhle auszubreiten. Von dem mittleren, unpaaren Theil entfernen sich die obern Hörner wieder, jedes nach seiner Seite; parallel dem Kieferrande laufen sie unter denselben her und erreichen endlich mit ihrer Spitze die Basis...

Schon bei dem männlichen *Xenopus* (Taf. II, Fig. 6—10.) hat sich, wie es scheint, der untere Theil des Zungenbeinkörpers von dem übrigen Zungenbein abgelöst und ist samt den *Columellae* integrierender Theil des Kehlkopfes. Sicher aber ist es bei *Pipa*, in beiden Geschlechtern. Der Rest des Zungenbeins bei *Pipa* deutet sich leicht durch eine Verschmelzung mit *Xenopus*. Der ovalen Lücke des *Xenopus* entspricht eine genaue kreisrunde bei *Pipa* (Fig. 11. (*a*)). Auch diese wird nach unten vom oberen Rande des Zungenbeinkörpers, nach oben und den Seiten von den oberen Hörnern begrenzt, die hier ebenfalls in einem mittleren unpaaren Theil zusammenstossen, aber auch in diesem enden. Die obere Spitze des Zungenbeins (wb) ist gleich den verschmolzenen und verkümmerten oben Hörnern. Die Seitenäste, die mit dem Schädel articuliren sollten, sind verschwunden. Auch hier treten, wie bei *Xenopus*, Muskeln durch die Lücke zwischen den vorderen Hörnern. Der Platte *cd* bei *Xenopus* entspricht eine ähnliche bei *Pipa*, die aber hier mit dünnem Stiel und in der That vom Seitenrand des Zungenbeinkörpers entspringt. Dieser ist, wie erwähnt, in einen Zungenbein- und einen Stimmladentheil zerfallen. Der untere Rand des Zungenheils trägt in der Mitte eine vorragende Spitze und diese stößt fast zusammen mit der oberen Spitze des Stimmladenheils. An dem letzteren (Fig. 11. 14. *a") sitzen auch die knöchernen *Columellae* (*e*), die also wieder integrierende Theile der Stimmlade sind.

Nachdem nunmehr die Form des eigentlichen Zungenbeins der Aglossa erklärt ist, kehre ich zu meinem Gegenstand, zur Beschreibung ihres Stimmapparats, zurück. Wie erwähnt ist beim weiblichen *Xenopus* der Körper des Zungenbeins mit dem vorderen Theil des Stimmladenknorpels zu einer Platte verschmolzen (Fig. 1. *a z z*), die eben so continuirlich mit den knorpigen Epiphysen der Columellen (*e*) zusammenhängt. Denkt man sich in Taf. I, Fig. 24. (von *Bufo cinereus*) den Raum zwischen dem ringförmigen Knorpel (*z*) und den *Columellae* (*e e*) durch Knorpel ausgefüllt, so hat man die vordere Wand der Stimmlade von *Xenopus*. An den Seiten der einfachen Platte liegen die knöchernen *Columellae*, von
untern Rande entspringen die Bronchialfortsätze (Taf. II. Fig. 1. λ), die deutlicher als bei den bisher beschriebenen Batrachiern Querfortsätze abschicken und zuletzt in einzelne lose Querstreifen (ν), Rudimente von Knorpelringen, zerfallen. Auch der hintere Theil des Ringknorpels (Fig. 2. ζ) stellt eine breite und hohe, in der Mitte der Länge nach gefurchte Platte dar, die aber nur die untere Hälfte des Kehlkopfs schliesst. Sie stösst in einen scharfen Winkel, aber continual mit der vorderen Knorpelplatte zusammen, sowohl an den Seitenrändern des untern Randes (in der Mitte bleibt eine Lücke, durch welche die Bronchien austreten), als am untersten Theile des Seitenrandes. Der grösste Theil der Seitenränder der hinteren Platte ist frei, nach oben aber legt sie sich wieder an die Columella an, indem sie sich nach vorn umbiegt, und endet in einem scheuklappenartigen, abgerundeten Fortsatz (ζ), dessen Fläche nach rechts und links, dessen Wand gerade nach hinten, dann nach oben gewandt ist. Dieser Fortsatz ist von der hinteren Platte durch einen tiefen Einschnitt getrennt, durch welchen die Sehne eines Muskels der Giessbeckenknorpel (Fig. 5. m) geht. Der obere Rand der hinteren Platte ist in der Mitte nur wenig, der untere Rand stark eingebogen. Die Giessbeckenknorpel des Weibchens (Fig. 2. η; Fig. 3. 4.) sind durchaus nur knorplig. Sie bestehen jeder aus einem querliegenden, cylindrischen Theil und einem aufsteigenden, platten und sehr dünnen, flügelartigen Theil, der auf dem cylindrischen so gedreht ist, dass seine äussere Fläche etwas nach hinten, die innere etwas nach vorn sieht. Der cylindrische Theil ist kurz, artculirt durch seine innere Fläche (Fig. 3. ζ) mit der innern Fläche des gleichnamigen Knorpels der andern Seite, durch seine äussere Fläche mit dem scheuklappenartigen Fortsatz der hinteren Platte. Die flügelformigen Theile liegen in der hinteren und mehr noch in der Seitenwand der Stimmlade; nach unten ist der Raum zwischen ihnen durch Muskeln geschlossen; oben macht ihr Rand, nur von der Schleimhaut überzogen, einen Theil des Randes des Aditus laryngis aus. Die Concavität zwischen ψ und ω (Fig. 4.) entspricht der Wölbung der innern Fläche des scheuklappenförmigen Fortsatzes, die Spitze ψ legt sich über den obern Rand desselben. Von ihr entspringt ein rundliches Band oder vielmehr eine Duplicatur des Perichondriums, die auf der inneren Fläche der Columella nach vorn geht und sich an den inneren Theil des obern Randes der letztern befestigt. An den Winkel ω setzt sich die Sehne des Rückwärtsziehers (m).

Die Stimmlade des männlichen Xenopus ist auf den ersten Anblick von der des weiblichen sehr verschieden, scheint aber im Wesentlichen nach demselben Typus gebildet zu sein. Herrn Prof. Mayer bin ich dankbar verpflichtet für die Güte, womit er mir das seltene Präparat, welches er in seinen Analekten zur vergleichenden Anatomie p. 31. beschrieben und auf Tab. III. Fig. 6. abgebildet hat, zur näheren Ansicht zuschickte. Es fällt sogleich die knöcherne Platte an der vorderen Fläche der Stimmlade auf (Fig. 6 — 8 a, vergl. Mayer a. a. O. Fig. 6. α), welche rudimentär in der Stimmlade des Weibchens durch den runden Knochennern (Fig. 1. α) vorgebildet ist. * An dieselbe lehen sich seitlich die obern Enden

* Eine analoge Verknöcherung des untern Theils des Zungenbeinkörpers fand ich unter allen Batrachiern, die ich untersuchte, nur bei Algypos obstetricans (Taf. II. Fig. 24. α). Es ist eine viereckige, schmale und kurze Platte nahe dem untern Rande, zwischen den innern Rändern der knöchernen Columella, von denen sie indess noch durch Knorpelsubstanz getrennt ist. Sie läuft nach oben in zwei schmale, spitzzulaufende Fortsätze aus, die divergirend gegen die

Hensle, Beschreibung des Kehlkopfs.
der Columellae (e e). Der untere Rand der Platte läuft in der Mitte in eine lange Spitze aus (Fig. 6—8, x). Abgesehen von diesem untern, spitzen, von zwei concav Linien begrenzten Fortsatz würde die Platte ein ziemlich regelmässiges Sechseck darstellen. (Vergl. die schemat. Fig. 10.) In der Oberhälfte des Sechsecks befinden sich zwei ovale Lücken, deren grösster Durchmesser parallel der Seite yw läuft; eine vom Winkel y zum Winkel z gezogene Linie theilt sie in zwei fast gleiche Hälften. Die Platte ist an beiden Seiten umgerollt, so dass ihre Convexität gegen die Höhle der Stimmhöhle sieht und dass die eine Hälfte der ovalen Löcher in der vorderen Wand, die andere in der Seitenwand der Stimmhöhle liegt. Den obernen Theil der Seitenwand bilden also die beiden, die ovale Öffnung begrenzenden platten Knocheneleisten y z Fig. 7. Von der obernen dieser Leisten geht ein dünnes Knochenplättchen (Fig. 6. 8. q) als breiter Fortsatz nach unten und endet mit abgerundeter Spitze vor dem obernen Rand der untern Knocheneleiste. Es liegt vor der vorderen Hälfte des ovalen Lochs und bedeckt dasselbe so, dass nur eine dünne Spalte übrig bleibt. Zwischen diesem Fortsatz und der obernen Leiste (y Fig. 7.) der Knochentafel ist das obere, platte Ende der Columella (e) unbeweglich eingefügt. Nach abwärts wird die letztere dicker, mehr cylindrisch; sowohl ihre vordere, als ihre hintere Fläche ist frei, wie beim weiblichen Thiere und während die Seitentheile des schildförmigen Knochens a nach hinten sich umbiegen, entsteht zwischen ihnen und der hintern Fläche der Columella eine Rinne, die wohl von Muskeln ausgefüllt ist. Der Rest der vorderen Wand der Stimmhöhle, zwischen der Zangenbeinplatte und den Columellae ist knorplig, wie beim Weibchen; nur zwischen den untern Enden der Columella finden sich zwei unregelmässige Verknöcherungen, die zusammen eine Aformige Figur bilden, jedoch weder unter sich in der Mittellinie, noch mit den Columellae zusammenhängen (Fig. 6. z). Man kann darin wieder eine Vorbereitung zu der Form erkennen, die der ringförmige Knorpel bei Pipa 3 hat. Unten bieget sich die Knorpelplatte der vorderen Wand, die mit den Epiphysen der Columellae verschmolzen ist, in einem scharfen Winkel zur hintern Wand um, indem auch hier für die Bronchien in der Mitte eine Lücke bleibt. Die untersten zwei Dritttheile der hintern Wand sind ebenfalls knorplig (Mayer a. a. O. Fig. VI. e). Das obere Drittel ist nach Mayer durch eine Membran geschlossen. Die Giessbeckenknorpel oder besser Knochen (Fig. 9. 10. f) bestehen, wie beim Weibchen, aus einem queren cylindrischen Theil und einem ansteigenden Fortsatz, aber der letztere ist konsisch und spitz, nicht flügelförmig, und wie der Körper vollkommen knöchern; die ansteigende Spitze liegt hinter der ovalen Öffnung der schildförmigen Knochentafel, der cylindrische Körper hat eine Gelenkfläche (Fig. 9. x), welche wahrscheinlich, wie beim Weibchen, an eine ähnliche Fläche des andern Giessbeckenbeins gefügt ist.

Der obere Rand der sechseckigen Platte (Fig. 64.) ist breit, in der Mitte vertieft und rauh und scheint durch eine Naht mit dem Zangenbeinkörper verbunden zu sein. Aus

Ursprüngen der obern Hörner hin auf der vorderen Wand des Zangenbeinkörpers verlaufen und über die Fläche desselben leistenartig hervorragen. Diese Verknöcherung hat Duchy von Obstetricus punctatus beschrieben (Recherches sur l'ostéologie et la myologie des batraciens, p. 96. Fig. 21). Sie soll aus zwei hammerförmigen, nach unten mit den queren Köpfen verbundenen, nach oben mit den Stielen divergirenden Knochen bestehen. Ich vermute, dass sie sich nicht anders verhalten wird, als bei Obst. vulgaris (Alytes obstetricis).

Weit auffallender, als bei *Xenopus*, ist die Verschiedenheit der männlichen und weiblichen Stimmlade in der Gattung *Pipa*. Das Knochen- und Knorpelgerüst der Stimmlade des Weibchens ist abgebildet Taf. II. Fig. 11—13. Die beiden Seiten der vordern Fläche der Stimmlade begrenzen die *Columellae* (Fig. 11. e); *a* nach oben convergiren beide und hängen zusammen mit einer dreieckigen, schräg von vorn nach hinten gerichteten Knorpelplatte *a", dem losgerissenen und zur Stimmlade gezogenen Theil des Zungenkörpers. Der Raum, den dieser Knorpel von oben, die *Columellae* von den Seiten und der gleich zu beschreibende ringförmige Knorpel von unten begrenzt (Fig. 11."), ist häufig. Die knorpfligen Epiphysen des untern Endes der *Columellae* (ee) bilden samt dem vorder Theil des ringförmigen Knorps (zz) eine breite, quere Knorpelleiste, die die vordere Wand der Stimmlade nach unten begrenzt. Indem diese Knorpelleiste jederseits sich auf die hintere Wand der Stimmlade umschlängt, steigen ihre untern Ränder von beiden Seiten gegen die Mittellinie aufwärts und schliessen einen, nach unten offnen Winkel ein. Der Raum, der auf diese Weise am untern Theil der hintern Fläche übrig bleibt, wird durch eine feste, fibröse Haut (Fig. 12.) ausgefüllt. Der obere Rand dagegen, der an der vorder Seite horizontal liegt, geht an der hintern Wand fast senkrecht aufwärts. So entsteht eine viereckige, unten tief ausgeschnittene Knorpelplatte, deren Seiten hinten den äussern Rändern der *Columellae* liegen. Auch der obere Rand der Platte ist etwas concav. An beiden Seiten verlängert er sich in schmale, cylindrische, allmählich sich verjüngende Leisten oder Hörner, die sich zu beiden Seiten des Zungenbeinstücks *a" an dasselbe anlegen und bis zur obersten Spitze desselben reichen. Der Zusammenhang der Theile wird leichter, als durch eine detaillierte Beschreibung, durch einen Blick auf Fig. 13. anschaulich werden, welche die Stimmlade hinten in der Mittellinie geöffnet und ausgebreitet darstellt, so dass man das Innere, sowohl der hintern als der vordern Wand, zu Gesicht bekommt. Auf der rechten Seite ist die Schleimhaut wegenommen und die Knorpel sind in ihrem Zusammenhange rein préparirt. Nach oben wird die hintere Knorpelwand der Stimmlade über dem ringförmigen Knorpel vervollständigt durch ein querovales Stück (o Fig. 12. 13.), welches durch eine Schuppennaht mit dem obren Rand des Ringknorpels verbunden ist, indem es innen tiefer hinabreicht, als aussen. Auf seinem obren Rand und seiner innern Fläche sind die Giessbeckenknochel befestigt. Dieses Stück findet sich getreu bei keinem andern Batrachier; wir werden denselben aber bei einigen der höheren Reptilien wieder begegnen. Ich kann es nur für das Rudiment einer *Cartilago cricoidea* halten, die also hier zum erstenmal als ein besonderer Theil des ringförmigen Knorps der Stimmlade auftritt. Dies dient zugleich zum Beweis, dass der ringförmige Knorpel der übrigen Batrachier, wenn man ihn als Kehlkopfknorpel ansehen will, nicht bloß *Cartilago cricoidea*.
coidea oder thyroidea, sondern beides zugleich ist. Mehr darüber bei der Beschreibung des Schildkrötenkéhlkopfs.

Die Cart. arytaenoidea (Fig. 12. 13. f) besteht aus einem breitern und platteren obern Theil, der über die Cart. cricoidea frei hervorsteht, und einem absteigenden, schmalen, zylindrischen Fortsatz, der bis zur Naht zwischen C. cricoidea und dem ringförmigen Knorpel reicht.

Die Bronchialknorpel (Fig. II. p. Fig. 21.) hängen schon nicht mehr kontinuierlich mit dem ringförmigen Knorpel zusammen. Es sind unregelmässige, schmale Querleisten, die nach oben noch verbunden sind, gegen die Lunge hin sich aber mehr isoliren. Es sind deren nach Rudophi (a. a. O.) ungefähr 30 in jedem Bronchus. Von den seitlichen Enden derselben ragen kurze, spitze Fortsätzte in die Hohlé der Bronchien. Ahnliche Knorpelspitzen finden sich durch die ganze Lunge zerstreut. Die Bronchialringe nehmen nur die innere Seite der Bronchien ein, während die äussere Fläche blos häutig ist.

Die Stimmlade der männlichen Pipa zeichnet sich vor der weiblichen schon durch ihre Grösse aus, ferner dadurch, dass die meisten Theile, die dort knorpelig sind, hier sich in Knochen umgewandelt haben. Zuerst fallen an den Seiten der vorderen Fläche zwei longitudinale Knochenplatten (ee) auf, die Columnellae des Zungenbeins. Sie treten nach unten hinter den ringförmigen Knochen xx und enden, genau von denselben bedeckt, mit einem freien Rande. In der oberen Hälfte der vorderen Wand liegt zwischen ihnen eine viereckige Knochenplatte, die wieder durch eine ringförmige, stärker verknöcherte Stelle (a) ausgezeichnet ist. Es ist, wie man leicht sieht, das untere Stück des Zungenbeinkörpers, und die kreisförmige, dichter verknöcherte Partie erinnert an den Knochenkérps bei Xenopus 2 (Fig. 1. c). Die Partie zwischen dem untern Rande der Zungenbeinplatten und dem ringförmigen Knochen ist nur häutig.

Der ringförmige Knorpel (Fig. 16. 17. zx) ist, wie beim Weibchen, mit den Epiphenys der Columnellae untrennbar verschmolzen und ganz verknöchert. Er besteht aus zwei vordern, unter einem stumpfen Winkel vereinigten Schenkeln und zwei hintern Schenkeln, die unten unter einem spitzen Winkel zusammenstossen, dann mit ihren einander zugewandten Rändern dicht an einander liegen und die ganze hintere Wand der Stimmlade bilden. Die beiden rechten und die beiden linken Schenkel der vorderen und hintern Abtheilung stossen unten an einander und verlängern sich nach aussen zu schnabelförmigen Vorsprüngen, welche Muselfasern zur Insertion dienen. Vorn und hinten sind zwischen den untern Rändern der Schenkel Membranen ausgespannt (Fig. 16. k. Fig. 17. l), welche am untern Rande der Stimmlade zimmertreten, und, in der Mitte verbunden, jederseits eine rundliche Öffnung übrig lassen, die in der Hohlé der Bronchien führt. (Bei einem zweiten Exemplar war auch ein Theil der vorderen Membran (k) und die Scheidewand zwischen den Bronchien knorpelig.)

An der hintern Fläche ragt der ringförmige Knochen höher hinauf, als die Columnellae und das Zungenbein an der vordern. * Er wird gegen den obern Rand dicker, bis zu

* Rudolphi (a. a. O. p. 14. und Taf. II. Fig. 3.) hat die hintere und vordere Fläche verwechselt. Die genaueste Abbildung ist immer noch die erste von Schneider (Historia amphibiorum. fasc. I. tab. II. fig. 4.—11. p. 263.), obschon Schneider die Bedeutung der Cista, wie er sie nennt, nicht kannte, sondern sie für einen Appen-
dix des Brustbeins hielt.
2"

dick und zeigt zwischen den compacten Lamellen, welche die äussere und innere Oberfläche
bilden, deutlich eine diplöitische Substanz. Der obere freie Rand ist vertieft und die Ver-
tiefung (ω Fig. 17. 18.) durch Knorpelsubstanz ausgefüllt.

Ueber die obere Apertura der Stimmlade, die hinten vom Ringknorpel, seitlich von den
Columellae, vorn von der mittleren, wellenförmig ausgeschnittenen Zungenbeinplatte begrenzt
ist, legen sich die obern Theile der beiden Giessbeckenknochen, welche von beiden Seiten
vorn und hinten einander berühren, in der Mitte aber eine Öffnung übrig lassen, den *Aditus
laryngis*. Das rechte Os arytaenoides ist in Fig. 19. von seiner inneren planen, der
Kehlkopfhöhle zugewandten Fläche dargestellt, in Fig. 20. von seiner äusseren, convexen Seite,
die der Wand der Stimmlade zugekehrt ist. Es hat im Allgemeinen die Form wie beim
Weibchen, ist aber viel grösser, und namentlich der dort erwähnte cylindrische Fortsatz nach
unten so verlängert, dass er fast bis zur Einmündungsstelle der Bronchien reicht. Dieser
Fortsatz ist knorpelig, während der eigentliche Körper des *Os arytaenoides* aus fester
Knochensubstanz besteht. φ ist der vordere, dünnere, aber längere, χ der hintere, kürzere
und stärkere cylindrische Fortsatz, deren jeder an seinem Ende eine Gelenkfläche trägt, wo-
durch beide Knorpel vor und hinter der Glottis mit einander articuliren. ψ ist ein kugel-
förmiger Gelenkkopf, durch welchen der Giessbeckenknorpel hinten mit einer Gelenkgrube
articulirt, die theils von der hintern Wand des ringförmigen Knorpels, theils von oben Seiten-
theil der *Columella* gebildet wird. τ (Fig. 16 — 20.) ist ein breiter, flacher Fortsatz, der
über die *Columella* ragt und den Muskeln zur Insertion dient. Durch die mit v bezeichnete
Fläche endlich articulirt der abstiegende Theil des Giessbeckenknorpels mit einem Vorsprung
der vorderen Wand der Stimmlade nach innen. Es befindet sich nämlich ungefähr in der Ge-
gend des oben Randes der stärker verknöcherten Stelle α an der inneren Fläche der vorderen
Wand ein ovaler, mit dem längern Durchmesser in der Längenaxe der Stimmlade gelegener
knorplicher Vorsprung, an dessen Seiten sich die Giessbeckenknorpel mit der genannten con-
cave Fläche lehnen. Dem Vorsprung der vorderen Wand gegenüber hat auch die hintere
Wand eine in die Höhle der Stimmlade vorspringende Leiste, die sich zwischen die beiden
absteigenden Theile der *Cart. arytaenoidae* legt.

Die Bronchialringe sind von denen des Weibchens nicht wesentlich verschieden. Be-
kanntlich sind die Bronchien beim Männchen bedeutend kürzer, als beim Weibchen.**
Auffallend bleibt es, dass von der Trennung der *Cartilago cricoidea* des letzteren beim Män-
chen keine Spur sich findet.

Muskeln der Stimmlade.

Zu erst und an constantesten erscheint unter den Muskeln der Stimmlade der Batra-
chier ein Erweiterer (*M. dilatator aditus laryngis*), welcher bald von der Wirbelsäule
und selbst vom Schädel, bald von Zungenbein entspringt und an den Rand der Stimmladen-
spalte, oft auch an die *Cartilago lateralis* seiner Seite sich befestigt. Er ist bei Proteus,

am Kehlkopf der männlichen *Pipa* unterscheidet, ohne ihre Lage anzugeben.

** Rudolphi a. a. 0.
Menobranchus und Siredon, wie bei Lepidosiren nur ein Theil eines Rumpfmuskels, der von seinem Ursprunge, von der Wirbelsäule oder dem Zungenbein aus sich fächerförmig gegen die Mittellinie hin ausbreitet und über und vor der Stimmlade mit dem gleichnamigen Muskel der andern Seite in einer Art Linea alba zusammenkommt. Der untere Theil der Fasern dieses Muskels geht an die Stimmlade; er kann daher auch nicht nur die Ränder des Stimmladeneingangs auseinanderziehen, sondern auch die Stimmlade sammt der vorderen Körperwand, auf der sie ruht, gegen die Wirbelsäule zurückbewegen oder bei der natürlichen Lage des Reptils anheben.

Bei Menobranchus entspringt dieser Muskel theils von hintersten Zungenbein- (Kiemten-) bogen, theils von einer Aponeurose, die vom Zungenbein und der Wirbelsäule aus zwischen dem Rücken- und dem Bauchtheile der Seitenmuskeln längs den Seiten des Körpers herabgeht. An seinem untern Rande verflacht er sich mit longitudinalen Fasern des äusseren geraden Bauchmuskels, der zu den Kiemenbogen geht.

Beim Amphiuma und Menopoma ist der Dilatator aditus laryngis in mehrere einzelne Muskeln zerfallen, die entweder vom Zungenbein oder von der Wirbelsäule kommen.

Bei Amphiuma liegen untereinander zwei platten, schmale Muskeln, von denen der obere (Taf. I. Fig. 8. m') von der Spitze des untersten Zungenbeinhorns, der untere (m'') von Dornfortsätzen der Wirbelsäule entspringt. Zugleich tritt bei diesem Tier der gerade Bauchmuskeln (1) an den ganzen oberen Rand der Stimmlade, indem er sich, wie bei Menobranchus, zum Theil mit dem Erweiterer verflacht. Menopoma hat ebenfalls den Erweiterer vom untersten Zungenbeinhorne (Fig. 12. m'), welcher hier mit seinen oberen Fasern an die Stimmlade geht, während die untere größere Portion mit dem entsprechenden Theile des gleichnamigen Muskels der andern Seite in einen einzigen Quermuskel zusammenfließt, der nur durch Zellgewebe an die Stimmlade befestigt ist. Der Dilatator aditus laryngis von der Wirbelsäule ist doppelt. Der grösse (m'') breitet sich gegen die Luftröhre hin fächerförmig aus. Seine Insertion an deren Seitenwand reicht vom unteren Rande des Muskels m' an fast ½ nach abwärts bei einem 13" langen Exemplar. Der kleinere Dilatator von der Wirbelsäule endlich (m'')' entspringt an dieser dicht unter dem vorigen, läuft aber vor ihm, als ein schmaler Streifen, nach aufwärts, tritt hinter den ersten Erweiterer vom Zungenbein und inserirt sich oberhalb desselben an die obere Spitze der Stimmlade.

Von der Wirbelsäule allein entspringt der M. dilatator der Salamandra (Fig. 17. m), und zwar mit einer breiten Aponeurose von dem zweiten Halswirbel. Er geht, das Thier auf dem Bauche liegend gedacht, wie ein schmales Band über dem M. sus-occipito-spinal Ducès, dann über dem M. masto-sus-acromial Ducès nach aussen, schlägt sich dann über den Rand des letzteren nach unten und befestigt sich am Rande des Aditus laryngis. Bei Triton hat der Erweiterer des Stimmladeneingangs eine ganz gleiche Form und einen ähnlichen Verlauf; er entspringt aber, statt von der Wirbelsäule, vom Schädel selbst, nämlich von hintern, äus-

*** Ducès, ebendas, p. 186.

Vom Zungenbein allein, und zwar vom untersten Horn oder der Columella, nimmt der *Dilatator aditus laryngis* seinen Ursprung bei Proteus, ***Menobranchus, Siredon*** und bei allen ungeschwänzten Batrachiern, bei Coecilia kommt er vom vierten Horn des Zungenbeins. Bei Proteus (Fig. 3. m) befestigt er sich an die ganze vordere Fläche des Knorps der Stimmlade und geht vor der ovalen Öffnung in dessen oberem Theil weg zum innern Rand desselben. Bei Siredon (Fig. 4. m) und Coecilia (Fig. 1. m) kommt er breit vom innern Rande des Zungenbeinhorns und verschmilzt theilweise mit dem sogleich zu beschreibenden Constrictor. Es kommen nämlich am oberen Theil der Stimmlade von Siredon kreißformig verlaufende Querfasern vor, die an der hintern Fläche in einer Art weisser Linie zusammenstossen (Fig. 5. n). Offenbar ist ihre Function, den Eingang der Stimmlade zu verengen und zu verschließen. Bei Coecilia geht nur an der hintern Fläche der Giessbeckenknorpel ein Quermuskulatur vom äußern Rande des einen dieser Knorpel zum äußern Rande des andern, verschliesst zugleich nach unten die Spalte zwischen denselben und nähert sie durch seine Wirkung einander. Solche eigenthümliche Stimmladenmuskeln kommen unter den geschwänzten Batrachiern nur noch bei Triton und Salamandra vor (Fig. 17. n). Sie umgeben kreißformig von aussen die *Cart. arytaenoideae*, zum Theil bedeckt von der Insertion des Erweiterers.

Vor diesem Muskel entsteht bei Bufo vom inneren Rand, bei Rana vom ganzen äussern Rand der hintern Fläche der Columella der Muskel n (Fig. 19. 20. 24. 40. 42.),

* A. a. O. Fig. 85. 87. No. 13.
*** Der Muskel ist schon sehr genau beschrieben von Rusconi, *del proto anguino*, p. 78.
den man als den Verenger des Aditus laryngis betrachten muss. * Er tritt näm-
llich vor den vorderen Winkeln der Cartilagines arytaenoidae mit dem gleichnamigen Mus-
kel der anderen Seite durch eine Art von Linea alba zusammen und ist nur lose durch
Zellgewebe an die Stimmlade befestigt, jedoch so, dass der Muskel der rechten Seite, wenn
man ihn bewegt, den linken Giessbeckenknorpel anzieht und umgekehrt. Dadurch müssen
beide Muskeln in ihrer Verbindung den Eingang der Stimmlade kräftig zusammenschräuben.
Dieser Muskel fehlt bei Bombinator, bei Hyla kommt er nur von der unteren Spitze des
innern Randes der Columella.

Der dritte Muskel p (Fig. 19. 20.) zeigt die meisten Verschiedenheiten in seinem
Verlaufe. Bei Bufo entspringt er vom innern Rande des knöchernen Theils der Columella
und inserirt sich an die hintere Spitze des Giessbeckenknorpels. Seine Wirkung ist, die
hintern Winkel des Giessbeckenknorpel nach vorn zu ziehen und dabei den untern Rand der-
selben nach innen gegen die Höhle der Stimmlade zu drücken. Ich will ihn daher Com-
pressor der Stimmlade nennen.** Durch seine Contraction biegt er zugleich den hintern
Winkel des Giessbeckenknorpels nach aussen um, wodurch das Stimmband gespannt wird.
Wie bei Bufo verhält er sich auch bei Pelobates, Discoglossus, Engystoma und Cer-
tophrys.

Bei Hyla entspringt er theils vom vorderen, obern Rande des ringförmigen Knorpels
seiner Seite bis beinahe zur Mittellinie, theils von der fibrösen Haut, welche den ringförmigen
Knorpel und die Giessbeckenknorpel verbindet, und geht, in mehrere Bündel getheilt, an die
untere Spitze der Cart. arytaenoidae. Bei Rana sind statt eines Compressor zwei völlig
getrennte Muskeln vorhanden, die aber dieselbe Wirkung haben. Der erste (Fig. 42. p')
entspringt vom innern Rande des Zungenbeinkörpers dicht neben der Columella und geht
unter dem Erweiterer und Verenger durch zur hintern Spitze des Giessbeckenknorpels. Der
zweite (p'') verläuft dicht unter ihm und entspringt von dem vorderen, obern Fortsatz des
ringförmigen Knorpels (x' Fig. 41.).*** Bei Bombinator entspringt der Compressor vom
Zungenbein und inserirt sich nicht nur an den Giessbeckenknorpel, sondern auch an den hin-
tern Rand des Auschnittes des ringförmigen Knorpels.

Wenn es noch eines Beweises bedürfte, dass die Stimmlade der Pipa und Dactyle-
tra einen Theil des Zungenbeins nebst den Columellae mit enthält, so würde dieser in dem
Verhalten der Muskeln gefunden werden. Die Zungenbein-Stimmladenmuskeln der übrigen
Batrachier sind bei den genannten Gattungen zu eigenthümlichen Kehlkopfmuskeln geworden,
und die Rumpfmuskeln, die bei den andern Reptilien ans Zungenbein sich befestigen, gehören
hier zum Theil der Stimmlade an.

So entspringt der mit 4 (Taf. II. Fig. 22. 23.) bezeichnete Muskel, Meckel's

*M. hyoglossus.

* Hyo-pré-glottique, Duoks f. 47. No. 25.
** Duoks, Hyo-post-glottique. f. 47. No. 27.
*** Meine Beschreibung, welche im Wesentlichen mit der von Martin St. Ange a. a. O. p. 420. überein-
stimmt, weicht in einigen Punkten von derselben ab. Der Muskel, den ich Constrictor nenne, wird von Martin St.
Ange den Erweiterern zugezählt. Den untern Compressor (Constrictor M. St. Ange) betrachtet dieser Gelehrte als
einen kreisförmigen Sphinkter.
Rückwärtszieher der Zunge, * Mayer's Laryngoglossus, ** mit einem Bündel jederseits an dem äußeren untern Theile der Stimmlade, also eigentlich von der COLUMELLA des Zungenbeins. Aufwärtssteigend convergiren beide Bündel, treten zu einem gemeinschaftlichen Bauche zusammen und gelangen durch die rundliche Öffnung des Zungenbeins († Fig. 11.), eigentlich also über den oberen Rand des Zungenbeinkörpers, und über der Zunge weg, zu dem Boden der Mundhöhle, wo sie sich wieder in drei Bündel spalten, ein mittleres und zwei seitliche, die sich divergirend in die Haut des Bodens der Mundhöhle inseriren. Ihr Ursprung ist somit der Stimmlade durch den Herzbeutel (J Fig. 22.) bedeckt. Diesem Muskel entspricht vollkommen der M. hyoglossus der übrigen Batracien; dieser entsteht mit einem Bündel jederseits von der Spitze der COLUMELLA, liegt nach dem Zusammentreten beider Bündel als einfacher platter Muskel vor dem Zungenbeinkörper und spaltet sich alsdann wieder in zwei Portionen, die divergirend in die Zunge gehen.*** Wie der M. hyoglossus, so strahlt auch der dem M. geniohyoideus entsprechende Muskel bei Pipa (unsere Fig. 22. No. 2.) statt in die Zunge, in den Boden der Mundhöhle aus.

Der oberflächlichste Muskel des Zungenbeins und der Zunge, der, ob er gleich die M. sternohyoideus nicht angeht, doch des Zusammenhanges wegen hier beschrieben werden muss, entspringt von der hintern Fläche der Spitze des Brustbeins (G Fig. 22., der obre Theil des Brustbeins bis auf seine Spitze ist weggommen). Er theilt sich in zwei Portionen, von denen die äussere, breitere (5) an den oberen Rand des grossen Zungenbeinhorns geht; die innere, schmalere (5') an die knorpelige Stütze der Zunge. Er müsste also Sternohyoideus heissen.**** In Fig. 23. sind beide Mm. Sternohyoidei weggenommen bis auf das Fascikel der rechten Seite, welches in die Zunge geht.

Zunächst unter diesem folgt, als ein Theil des innern schiefen Bauchmuskels, † der Muskel No. 6., der in drei Bündeln sich spaltet. Das äussere ist das breiteste und geht bis zum oberen Rande des grossen Zungenbeinhorns; das mittlere (6') befestigt sich an den unteren Rand des Zungenbeinkörpers. Zwischen beiden tritt der M. geniohyoideus durch (No. 3. Fig. 22. 23.). Das innerste, 6' Fig. 15. 23. (auf der rechten Seite ist es weggpréparirt), heftet sich an der Spitze der Stimmlade. Da nun dieser Theil der Stimmlade ein Stück des Zungenbeinkörpers ist, so kann man sagen, dass die Portion des Bauchmuskels, die dem Zungenbeinkörper angehört, durch Zerfallen des letzteren gleichfalls in zwei getrennte Inser- tionenzerspalten worden ist.

In der dritten Schicht endlich folgt ein noch breiterer und eben so platter Muskel (No. 7. Fig. 23.), der ebenfalls seinem Ursprunge nach dem innern schiefen Bauchmuskels angehört. Er inserirt sich mit seinen grössten Theilen an den untern Rand des grossen Zun-

* System der vergleichenden Anatomie, Bd. IV. P. 340.

** Nov. Acta Acad. Nat. Cur. t. XII. p. 537. Fig. 2. c. Mach Mayer entsprüngen sie, der mittlere von der vorderen Fläche des Larynx, die seitlichen von den grossen Hörnern des Zungenbeins. Es beruht dies wohl auf einer Verwechslung mit dem Ursprunge des M. geniohyoideus Fig. 2. c. Vergl. unsere Fig. 22. 23. No. 3.

*** Vergl. die Abbildung bei DUGÉS (Recherches sur l'ostéologie et la myologie des batraciens, Fig. 47. No.24.).

**** Mayer's Sternomaxillaris (a. a. O. p. 535. Fig. II. b b *) scheint ein Theil desselben zu sein.

† Mayer a. a. O. p. 535. No. 4.

HENLE, Beschreibung des Kehlkopfs.
Muskeln von
Xenopus.

genbeinhorns, eine schmale Portion (7') löst sich von dem innern Rande ab und begeht sich zur Epiphysie der Columella oder zum äusseren untern Rande der Stimmlade.

Die eigenthümlichen Muskeln der Stimmlade bei Pipa entsprechen denjenigen Muskeln bei den andern schwanzlosen Batrachier, welche von Zungenbein an die Knorpel der Stimmlade gehen. Ich fand

1. einen Erweiterer (Fig. 14. 15. m), *** welcher vom ganzen untern äussern Fortsatz der Columella, sowohl an der vordern, als an der hinten Fläche entspringt, mit con- vergirenden Fasern nach oben geht und sich an die Cart. arytaenoidea, beim Männchen an den Musksfortsatz (x) des Os arytaenoideum ansetzt. Beim Männchen bedecken diese Muskeln die ganze vordere Fläche der Stimmlade. Einige Fasern desselben heften sich beim Weibchen an die obere Spitze der Stimmlade (das Zungenbeinstück derselben);

2. einen Compressor (p), entspringend vom Seitentheil des vorderen Verbindungsstücks der Columellae, also wie bei Rana vom Zungenbeinkörper, und nun die Stimmlade herum, unter dem vorigen weg zur hintern Spitze des Körpers des Giessbeckenknorpels tretend.

Bei Xenopus sind die betreffenden Muskeln im Allgemeinen denen der Pipa ähnlich. Aber der M. sternohyoideus (5. Fig. 22. bei Pipa) setzt sich bei Xenopus an das vordere Horn des Zungenbeins (b Fig. 1.), und der Hyoglossus (No. 4. Fig. 22. bei Pipa) entspringt nicht von der Spitze, sondern von den oben innern Rändern der Columellae; er ist viel kleiner, als bei Pipa und strahlt unmittelbar, nachdem er durch die Oeffnung des Zungenbeins durchgetreten, und noch hinter dem Zungenbein in den Boden der Mundhöhle aus. Statt der mittlern Portion des Hyoglossus bei Pipa findet sich bei Dactylethra ein zweiter Geniohyoideus, ausser demjenigen, welcher von den grossen Hörnern des Zungenbeins, wie

* DUCKS. a. a. 0. p. 125. Fig. 44. No. 17.
** System der vergleichenden Anatomie, Bd. III. p. 111.
*** MAYER's Musculus laryngaeus proprius a. a. 0. p. 535.

Die eigenen Muskeln des Kehlkopfs liegen bei *Xenopus* sämtlich an der hintern Fläche der Stimmhöhle. Sie sind:

1. Ein unterer Erweiterer (Fig. 5. m), entspringt vom äussern Rande der *Columella*, von deren unterer Spitze an bis zur Gegend des oberen Randes des ringförmigen Knorpels; seine untern Fasern steigen aufwärts, die obern quer; alle verbinden sich in eine starke, rundliche Sehne (m Fig. 4.), welche über den Ausschnitt an hintern Ende des oberen Fortsatzes des ringförmigen Knorpels, wie über eine Rolle weget, und an den untern äussern Winkel des Körpers des Giessbeckenknorpels sich befestigt. Er zieht denselben nach abwärts und dreht ihn zugleich so nach aussen, dass die innere Fläche seines aufsteigenden Fortsatzes nach rückwärts sucht.

2. Ein oberer Erweiterer (m’ Fig. 5.), vom oberen Theil des äussern Randes der *Columella* zum aufsteigenden Fortsatz des Ringknorpels und zur Haut der Stimmritze.

3. Ein Compressor (p) vom äussern Theile des Zungenbeinkörpers, da wo er sich mit der *Columella* verbindet, schieß nach innen und abwärts zum Körper der *Cart. arytaenoideae* und zur Haut der Glottis; zieht die Giessbeckenknorpel nach vorn und verengt dadurch den Eingang der Stimmhöhle von vorn nach hinten.

Stimmhänder.

Von der Lage des oberen Theils der Stimmhöhle im Verhältniss zum Zungenbein war im vorigen Abschnitt die Rede. Die Öffnung, durch welche die Stimmhöhle mit dem Schlundreich communicirt, ist bei den geschwänzten Batrachiern eine sehr feine Längspalte, die gewöhnlich so weit nach hinten liegt, dass sie bei geöffnetem Maule noch nicht sichtbar ist. Die Ränder des Stimmhöhlenliegungs sind scharf und deshalb wohl geschickt, den zischenden Ton hervorzubringen, den einige Thiere dieser Abtheilung ausstossen. **Sie bilden keinen oder einen kaum merkbaren Vorsprung in die Höhle der Speiseröhre; es sind die von Zellgewebe und Schleimhaut überzogenen, bei *Triton* und *Salamandra* auch noch von der Sehne des *Dilatator glottidis* bedeckten, hintern Ränder der *Processus* oder *Cartilagines arytaenoidae*. Eine Ausnahme davon machen *Sirexdon* und *Anplinuma*. Die hintern Ränder der Giessbeckenknorpel sind hier bedeckt von dem *M. constrictor* (n Taf. I. Fig. 5.) und der Schleimhaut der vorderen Wand der Speiseröhre geht continuirlich über dieselben (vergl. Fig. 4.). Von der obern Spitze jedes Giessbeckenknorpels (f’ Fig. 5.) geht aber eine Schleimhautfalte (Fig. 7. r) zum Boden der Mundhöhle und befestigt sich an die *Linea alba*, in welcher beide Erweiterer des Stimmhöhlenliegungs (mm Fig. 4.) zusammenkommen. Diese beiden

* Diesen nennt *Mayer* *Genio-ceratoides* (Analekten p. 30.).

** Vom *Proteus* sagt *Schinz* (*philos. transact. 1801. p. 245.): „It often produces a hissing kind of noise, pretty loud, more so than one should expect from so small an animal and resembling that produced by drawing the piston of a syringe.” *Siren* soll eine Stimme lieren lassen, *Cuvier*, *Reptiles douteux*. p. 107.
Schleimmanteln bilden die Ränder des Einganges in die Stimmlade. Da ihre obere Insertion der Stelle entspricht, an welcher sich die Zungenwurzel bei den Thieren befindet, die eine freie Zunge haben, so darf man sie wohl ligamenta aryglottica nennen. Sie sind dasselbe, was die Ligamenta aryepiglottica bei denjenigen Vertebraten, welche unter der Zungenwurzel den transversalen Vorsprung besitzen, den man Epiglottis nennt.

Die Stimmlade des Sirex ist die einzige unter denen geschwänzte Batrachier, in welcher eine Hervorragung vorkommt, die man auf den ersten Blick mit einem Stimmband vergleichen könnte. Sie geht gerade von oben und hinten nach unten und vorn (* Fig. 7.) und rührt von dem oberen Rand der Cart. arytaenoidea her; unter ihr ist eine Aushöhlung entsprechend der Concavität der inneren Fläche des genannten Knorpels.

Keinem schwanzlosen Batrachier, ausser Pipa und Dactylethra, fehlen die eigentlichen, den Ligamenta vocalia inferiola der Säugethiere entsprechenden Stimmbänder. Immer aber sind sie, vorn und hinten, an den Giessbeckenknorpel befestigt und nur selten erreicht ihr Rand vorn, oder auch hinten und vorn, den ringförmigen Knorpel. Dadurch unterscheiden sie sich von den Stimmbändern der Säugethiere, die vorn nur an die Cart. thyreoidea angeheftet sind. Man kann sie unversehrt erhalten, wenn man die Cart. arytaenoidea von einander und von dem ringförmigen Knorpel lospräparirt und völlig isolirt. Sie sind dünn, häutig und durch die natürliche Elasticität des Knorpels gespannt, und wenn man sich der Art erinnert, wie die Kehlkopfmuskeln wirken, so scheint es, dass die Stimmbänder, um zu schwingen, nicht sowohl in einen höheren Grad von Spannung versetzt, als vielmehr in

* Cuvier nennt sie „petit creux ou ventricule.“ Rept. dent. p. 115.
Die gewöhnliche Form des Stimmbandes der schwanzlosen Batrachier ist folgende. (Vergl. Taf. I. Fig. 23. 55. s, Martin St. Ange, a. a. O. Pl. XXVI. Fig. 4. m, und Mayer's Analekten, Taf. III. Fig. 8.) In dem ruhigen Zustande ist die eine Fläche der selben gegen die Aushöhlung des Giessbeckenknorpels, die andere Fläche gegen die Glottis gewandt, der eine Rand sich nach oben, der andere nach unten. Beide Ränder beschreiben Bogen, deren Convexität einander zugekehrt ist; der Bogen, der den untern Rand bildet, ist flacher, der obere Rand beschreibt mitunter einen fast vollkommenen Kreis (wie bei Hyla punctata Fig. 55.); dadurch wird das Stimmband in der Mitte schmal, vorn und hinten dagegen, an der Anheftungsstelle, breit. Diese Anheftungsstelle reicht meistens nicht über die Hälfte der Höhe des Giessbeckenknorpels nach oben, doch erstreckt sie sich bei Hyla fast bis zur Spitze. Der untere Rand ist immer frei, an den ganzen oberen Rand dagegen befestigt sich, vielleicht bei allen, eine Schleimhautfalte, die von dem ganzen unteren Rande der Cart. arystaenoidea entspringt. Durch diese Anordnung entstehen hinter dem Stimmbande zwei Taschen, die eine ober-, die andere unterhalb der genannten Schleimhautfalte, jene ist nach oben offen, ihre äussere Wand bildet die Cart. arystaenoidea, ihre innere Wand die Schleimhautfalte; die untere Tasche ist nach unten offen, ihre äussere Wand wird von der Schleimhautfalte, ihre innere Wand von der äussern Fläche des Stimmbandes begrenzt. Man vergl. den Durchschnitt Taf. III. Fig. 50., wo f den Giessbeckenknorpel, x die Schleimhautfalte, s das Stimmband bezeichnet. Ueber die Mitte der Schleimhautfalte verläuft ein schmales Bündel sehner Fasern, von unten Rande, wo es vom Giessbeckenknorpel entspringt, zum oberen Rande, von wo es in das Stimmband übergeht, und entweder in denselben sich verliert, oder in der Mitte desselben wieder herabgeht und an dem unteren freien Rande noch eine Hervorragung bildet. Es ist gleichsam ein Frenulum des Stimmbandes. An der entsprechenden Stelle liegt bei Microps Bonaparti in der Mitte des Stimmbandes ein herzförmiges Knorpelchen (Taf. I. Fig. 38.) mit der Basis nach unten, mit der Spitze nach oben gekehrt. Ein solches Knorpelchen fand Mayer bei Bufo Lazarus Sp.*

Wenn man in die untere Tasche und gegen die äussere Fläche des Stimmbandes bläst, Bildung der Stimm.
dass statt Einer Glottis drei Öffnungen entstanden, wie es irrhümlicher Weise Vicq-d'Azyn \(^a\) bei \textit{Rana} und \textit{Bufo} beschrieben hat. Obgleich diese Anordnung sich mit den physikalischen Bedingungen zur Bildung der Töne wohl verträgt, so bin ich doch gegen die Beobachtung später misstrauisch geworden, da sie so isolirt und ein Irrthum so leicht möglich ist.

Bei den meisten Arten dieser Abtheilung kommt ein zweites Paar Stimmbänder (\textit{Lig. vocalia infima}) unterhalb der so eben beschriebenen vor (Taf. I. Fig. 22. \(t\)). Es ist eine einfache Duplicatur der Schleimhaut, schmaler als das eigentliche Stimmband, die nahe am untern Rande von der seitlichen Hälfte des ringförmigen Knorpels und zum Theil auch noch von der vorderen und hinteren Spitze des Giessbeckenknorpels entspringt und in einen geraden, scharfen, nach oben gekehrten Rand endet. So entsteht auch hier eine Tasche, welche nach oben offen ist. Die äussere Wand derselben wird von dem untern Theil des Giessbeckenknorpels und dem oberen Rand des ringförmigen Knorpels gebildet. Durch Anziehen des erstern kann auch dies Band gespannt werden, und es scheint, namentlich bei \textit{Bufo}, frei genug, um in tönende Schwingung versetzt werden zu können. Der einzige, der dieser untersten Stimmbänder gedenkt, ist \textit{Maxer}, der sie bei \textit{Bufo} latarus und bei \textit{Algytes} fand. \(^{11}\)

Ich vermisste sie nur bei \textit{Pseudes}, doch sind sie in den verschiedenen Arten von sehr verschiedener Grösse.

Die Ränder des Eingangs der Stimmlade bei \textit{Xenopus} sind theils knorpelig, theils häutig. Der untere Theil derselben ist durch die obern Ränder der aufsteigenden Fortsätze der Giessbeckenknorpel (Taf. II. Fig. 2. \(j\)) gestützt, von denen aus die Schleimhaut zum Stimmladentheil des Zungenbeinkörpers geht, als eine dem \textit{Lig. aryglotticum} entsprechende Falte, und so den oberen Theil der Längsspalte, die in die Stimmlade führt (Fig. 5. \(B\)), begrenzt. Das Stimmband fehlt, an seiner Stelle findet sich nur eine scharfe Hervorragung des Giessbeckenknorpels, die vom querliegenden Körper desselben, am untern Rand des flügelähnlichen Fortsatzes nach vorn und oben geht, und hinter welchem die Stimmlade auf einmal geräumiger wird. So beim Weibchen. Wie das Männchen in dieser Beziehung sich verhält, weiss ich nicht; jedenfalls aber haben die Fortsätze an dessen Giessbeckenknorpel eine ganz andere Bedeutung, als die bei \textit{Pipa} \(3\), da sie nicht nach unten in die Höhle der Stimmlade hängen, sondern, gleich dem flügelähnlichen Fortsätzen des \textit{Xenopus}-Weibchens, nach oben gerichtet sind.

Bei der \textit{Pipa} \(3\) ist ebenfalls der hintere Theil des Randes des \textit{Aditus laryngis} knorpelig, der vordere (r. Taf. II. Fig. 13.) häutig. Der \textit{Aditus laryngis} (Fig. 16. \(B\)) ist eine Längsspalte. Im Innern der Stimmladenhöhle sieht man zwei Vorsprünge, die aber dick, wulstig sind und mit Stimmbändern nichts gemein haben. Der obere (Fig. 13. \(s\)) entspricht dem obern Rand des Giessbeckenknorpels, der untere (\(t\)) der Hervorragung seines absteigenden Fortsatzes. Bei dem Männchen der \textit{Pipa} hängt bekanntlich dieser Fortsatz frei in die Höhle der Stimmlade herab, dennoch aber, wie dies bei Beschreibung der Knorpel angegeben wurde, hingänglich in seiner Lage befestigt, um nicht in Masse hin und her schwingen zu können. Schwerlich würde auch von ihrem Anschlagen an die Wände der Stimmlade

\(^{11}\) Analecten p. 37.
ein Ton entstehen. Die Stimme der *Pipa* kann wohl nur durch Molekularschwingung der absteigenden Fortsätze der Giessbeckenknorpel erzeugt werden.

Beschuppte Reptilien.

Wir sahen bei *Coecilia* die Seitenknorpel nach unten hin zu Luftröhrenringen sich entwickeln, dadurch, dass die queren Aeste derselben einander hinten in der Mittellinie erreichten und die absteigenden Theile verschwanden, welche am oberen Theil der Stimmhals wie Brücken die queren Aeste zusammenhielten.

Sobald einzelne Ringe gebildet sind, ist die Stimmlade in Kehlkopf und Luftröhre Bildung der Luft-Röhre.

Unter den Batrachien, ist *Coecilia* die einzige, bei welcher Luftröhrenringe vorkommen und auch hier erscheinen sie erst weit unten, sind noch unregelmässig geformt und reichen nur an einer Seite auf die vordere Wand herüber. Unter den drei höher Ordnungen der Reptilien und bei allen höher Wirbeltieren wird aber der grösste Theil des unpaaren Respirationscanalys von isolirten Luftröhrenringen gebildet, und im Allgemeinen überwiegt mit fortschreitender Entwicklung die Länge der Luftröhre immer mehr gegen die Länge des Kehlkopfs, es sind verhältnissmässig immer weniger Ringe, die in dem Knorpelgerüst des letzteren verbunden bleiben. Die Trachealringe der *Coecilia* sind hinten geschlossen und vorn offen, die der höheren Gattungen sind entweder ganz ringförmig geschlossen oder hinten offen." Kommen geschlossene und offene Ringe bei denselben Thiere vor, so folgen die geschlossenen meistens gleich unter dem Kehlkopf in sehr wechselnder Zahl, bei *Elaps* reichen sie über \(\frac{3}{4} \) der Luftröhre nach unten, bei *Python* bis zu \(\frac{1}{2} \),** bei *Crotalus durissus* zählte ich deren 17, bei den Colubern nur ein paar. Unter den Sauriern ist der erste Luftröhrenring geschlossen, bei den Ecktern, bei *Phrynosoma, Scoloporus, Trapelus, Anolis, Cyclura, Ophiroyësa, Lacerta, Ameiva*, offen bei *Cephalopeltis, Anguis, Pseudopus, Zonurus, Tropidurus, Phrynococephalus, Polychrus, Iguana, Chamaeleo*. Auch bei den Krokodilen und Schildkröten sind mit Ausnahme von *Testudo, Sphargis* und *Chelonia*, die ersten Luftröhrenringe offen. Bei den Krokodilen aber nähern sich die hintern Enden der Luftröhrenringe einander nach und nach und es erscheinen hier geschlossene Ringe erst an dem unteren Theil der Luftröhre.*** *Pyodactylus fimbriatus* hat zunächst unter dem Kehlkopf geschlossene Ringe, dann eine Reihe (13) hinten offene, an einer erweiterten Stelle der Tra-

Ich beschränke mich nunmehr bei den Gattungen, bei welchen der Kehlkopf vom übrigen Respirationssapparat gesondert ist, auf die Beschreibung des Kehlkopfs allein, um so lieber, da in den übrigen Theilen, ausser der Bildung des untern Kehlkopfs bei den Vögeln, nur unwesentliche Veränderungen vorkommen, der untere Kehlkopf der Vögel aber in allen seinen Variationen seit *Cuvier* ausführlich beschrieben worden ist.

Kehlkopfknorpel der beschuppten Reptilien.

Während durch die vollendete Entwicklung der Luftröhre und ihrer Aeste der Respirationssapparat der beschuppten Reptilien über dem der vollkommensten Batrachier steht, schlies sen sich durch die Bildung derjenigen Knorpel, welche den Eingang in die Luftwege begrenzen, die meisten Schlangen und einige schlangenartige Saurier zunächst wieder den niederen Formen unter den nackten Reptilien an.

Man denke sich, dass der absteigende Theil der *Cartilago lateralis* des *Proteus* (9 Taf. I. Fig. 3.) nach beiden Seiten hin Queräste ausschicke, und dass diese Queräste von beiden Seiten, also hinten und vorn sich verbinden, wie wir dies bereits an der hintern Wand der Stimmhöhle bei *Menopoma* (Taf. I. Fig. 11.) geschehen sahen, so muss die Form sich entwickeln, wie sie z. B. unter den Schlangen bei *Cylindrophis* (Taf. VII. Fig. 48.) erscheint. Die Ringe sind hier noch eben so unregelmässig, wie bei *Salamandra atra* (Taf. I. Fig. 18.) die queren Fortsätze, und scheinen durch Aneinanderstossen solcher Fortsätze von beiden Seiten her gebildet. Es geschieht dabei jedesmal, dass die obersten Queräste vorn in eine Spitze verschmelzen, die sich zwischen die vorderen Ränder der *Processus arytaenoides* hineinlegt. Meistens verschmelzen auch die hintern ober Queräste zu einer Spitze, welche die Wurzeln der genannten Fortsätze von einander trennt; indess sind noch bei *Typhlops* die hintern Queräste gerade und von einander getrennt (Taf. III. Fig. 49.), und bei *Lachesis Yararaka* und *Dipsas bucephalus* (Taf. III. Fig. 20.) sah ich sie zwar in eine Spitze aufsteigen, aber ebenfalls noch unverbunden. Ja selbst unter den Sauieren kommt eine Trennung in der hintern Wand des Kehlkopfs wieder vor, bei *Iguana* (Taf. IV. Fig. 46.). Es wird ferner die Weise der Bildung bald dadurch minder kenntlich, dass die Wurzel dieser *Processus arytaenoides* mehr nach hinten auf den obersten Querast rückt, wie auch mitunter die longitudinalen Leisten, die die Ringe verbinden, nicht in der seitlichen, sondern in der hintern Wand des Kehlkopfs liegen (s. z. B. Taf. III. Fig. 20.).

Die anderweitigen Modifikationen der Form des Kehlkopfs hängen nur davon ab, wie die vordere und hintere Spitze sich umgestaltet, ob eine grössere oder geringere Zahl von Querästen durch den absteigenden Theil des Seitenknorpels zum Kehlkopf verbunden bleiben oder ob sie sich bald zu Trachealringen ablösen, ferner ob die Lücken zwischen den Querästen mehr oder minder sich schliessen, wodurch dann der Kehlkopf entweder aus einer Reihe seitlich zusammenhängender Ringe oder aus soliden, einfachen, dem Schildknorpel mehr sich nähernden Knorpelplatten gebildet scheint.

Die Giessbeckenknorpel zeigen, so lange sie noch mit dem übrigen Kehlkopfknorpel *Processus arytaenoides* continuirlich verbunden sind, nur geringfügige Abänderungen ihrer Form; es sind meist lange und verhältnissmässig schmale Knorpelstreifen, deren vorderer Rand durch Muskel und Haut mit dem äussern Rand der vorderen Spitze des Schildknorpels verbunden ist, deren hinterer Rand den Eingang in den Kehlkopf begrenzt. Oft erreichen die oberen Spitzen einander fast vor dem Kehlkopfeingange (wie bei *Hydrophis* Taf. III. Fig. 11., bei *Dryophis* Fig. 13.), häufiger tritt die vordere Spitze des Ringschildknorpels dazwischen (Fig. 4. 7. 9. 22.). Die Basis des Fortsatzes befindet sich, wie bereits bemerkt, nur bei wenigen Reptilien dicht hinter der vorderen Spitze und also gerade über dem absteigenden Knorpelstreifen, der die Ringe verbindet. Dies ist der Fall bei *Cylindrophis* (Fig. 48.), bei *Coluber flavescens* (Fig. 28.), bei *Ophiurus* (Taf. IV. Fig. 8.), einigermassen auch noch bei *Hydrophis* (Taf. III. Fig. 11.) und *Typhlops* (Fig. 49.). Am häufigsten entspringt der Fortsatz von der Mitte des oberen Seitenrandes der hintern Spitze (Fig. 4. 7. 9. 15. 16. 19. 21. 37.); bei *Crotalus* und *Dipsas bucephalus* (Fig. 3. 20.) kommt er fast von der Spitze selbst und sitzt wie auf einem Stiel oder Arm, der quer nach aussen geht. Er ist schmal und gerade (Fig. 21. 28. 37.), oder leicht gebogen (Fig. 49.), selbst knieförmig gekrömt (Fig. 24.), am
häufigsten myrtenblattförmig mit schmalerer Basis (Fig. 4, 7, 9, 16, 23), welche Gestalt in die Rautenform übergeht (Fig. 16, 19.) oder durch Abrundung der Spitze einem Oval sich nähert (Fig. 8, Taf. IV); zwei mal, bei *Naja haje* (Taf. III. Fig. 8.) und bei *Hydropsis* (Fig. 11. a), fand ich einen kurzen Fortsatz vom innern Rand gegen den Schildringknorpel hin, der sich dicht an den letztern anlegte.

Die Trennung des Giessbeckenknorpels vom Ringschildknorpel erfolgt, wenn man so sagen darf, nur ganz allmählich in der Reihe der beschuppten Reptilien. Es gibt vielleicht kaum eine Familie, wo beide constant verwachsen sind, und bei ganz verwandten Gattungen kommen Verschiedenheiten vor. Sie sind verwachsen bei *Cylindrophis*, getrennt bei *Ilyias*, verwachsen bei *Eryx*, getrennt und zu breiten Knorpeln entwickelt bei *Python* und *Boa*. In derselben Gattung finden sich bei einer Species die Giessbeckenknorpel constant getrennt, bei einer andern verwachsen, so unter den *Colubridini* (vergl. Taf. III. Fig. 28 und 31.); mitunter weichen Individuen derselben Art von einander ab, und ich konnte z. B. bei *Amphisbaena*, bei *Dipsas*, *Bungarus* nicht ermitteln, welche Form von beiden die Regel sei, endlich habe ich an derselben Exemplar den Giessbeckenknorpel der einen Seite frei, den der andern verwachsen gefunden (*Naja tripudians* Taf. III. Eig. 7.).

Auch wenn Giessbecken- und Schildringknorpel noch äusserlich unzertrennlich verschmolzen scheinen, zeigt die innere Structur des Knorpels, bei Betrachtung mittels der Lupe, dass die Trennung sich vorbereitet. An der Stelle, wo sie später Statt findet, fehlt die schwammige Substanz, die sonst eine Art Marköhle im Knorpel darstellt, und er besteht durchaus aus compacter oder Rindensubstanz (s. Taf. III. Fig. 25.).

Wie sich der Giessbeckenknorpel nach seiner Ablösung vom Schildringknorpel ferner umgestaltet, lässt sich nicht darstellen, ohne zugleich auf die Form des letztern genauer einzugehen. Ich will daher mit der Beschreibung der *Cartilago thyreocricoidea* den Anfang machen.

Ausser der Zahl der Ringe beruht die Mannichfaltigkkeit der Formen ferner auf der verschiedenartigen Entwicklung der queren Fortsätze, und danach lassen sich die Kehlköpfe...
der beschuppten Reptilien in mehrere Abtheilungen oder Gruppen ordnen, die aber durch mancherlei Uebergänge in einander fließen:

I. Die vordere Wand besteht aus deutlich und gleichmässig gesonderten Ringen. Sie unterscheidet sich, wenn man von den seitlichen Verbindungen der Ringe absieht, von der Luftthüle. Nur an der oberen Spitze wird die Bildung eigenthümlich dadurch, dass die obersten Querfortsätze in einem Winkel oder Bogen zusammen treffen, und also das Spatium zwischen den 2 obersten Knorpelstreifen entweder dreieckig (Taf. III. Fig. 16. 48.) oder zu einem Kreisabschnitt wird (Taf. III. Fig. 7. 12. 23. u. A.). So verhältn sich bei allen Schlangen, Python und Boa ausgenommen, unter den Sauriern dann gegen nur bei Cephalopeltis, Amphiesbaena, Anguis, Zygnis und Euprepes.

Bei dieser Form der vorderen Wand durchläuft die hintere Wand eine Reihe von Metamorphosen, die man in folgender Weise ordnen kann:

1. Die hintere Wand ist, ganz wie die vordere, aus discreten Knorpelringen gebildet. Hydrophis (Taf. III. Fig. 11.) und Zygnis.

2. Die hintern Querfortsätze bilden sich nur am oberen Rande des Kehlkopfs aus und treten zu einem Ring zusammen (dass sie zuweilen nicht vollständig von beiden Seiten verschmelzen, sondern nur durch eine Naht verbunden sind, ist schon erwähnt worden); der übrige Theil der hintern Wand ist häutig. Diese Form findet sich bei Vipera Berus (Taf. III. Fig. 4. 6.), Elaps (Fig. 9. 10.), Coelopeltis (Fig. 16.), Coronella (Fig. 24.), Coluber flavescens (Fig. 28.), Coluber pholidostictus (Fig. 31.), Cylindrophis (Fig. 48.), auch bei Amphiesbaena.

3. Der obere Ring ist, wie bei der zweiten Form, einfach und geschlossen. Weiters abwärts sind zwar hintere Querfortsätze angedeutet oder gebildet, erreichen aber einander nicht und die Mitte der hintern Wand ist häutig. Die Querfortsätze erscheinen bald wie Einkerbungen, ähnlich denen von Salamandra maculata (Taf. I. Fig. 16.), bald sind es deutliche Querleisten. Beispiele der ersten Art sind Naja tripudians (Taf. III. Fig. 7.), Dryophis (Fig. 13. 14.), Psammophis (Fig. 15.), Dipsas annulatus (Fig. 17.); die zweite Form zeigen Dipsas bucephalus (Fig. 20.), Dendrophis (Fig. 37.), am vollkommensten Typhlops (Fig. 49.).

4. Der obere und untere Ring der hintern Wand ist geschlossen. Es bleibt eine ründliche oder eckige Lücke, über welche die Haut wie an einem Rahmen ausgespannt ist. So verhält es sich bei Euprepes Telfairii (Taf. IV. Fig. 7.).

In den vier bis jetzt genannten Fällen hat noch keine Verschmelzung der einzelnen Ringe mit einander statt gefunden, und wenn der Kehlkopf seiner höhern Entwicklung dadurch entgegengeht, dass mehrere Ringe sich zu soliden Knorpelplatten verbinden, so steht also die hintere Wand bisher der vorderen gleich oder ist selbst hinter ihr zurückgeblieben. In den folgenden Formen aber eilt sie derselben voraus. Es verbinden sich nämlich

5. die obren Ringe zu einer breiten Knorpelplatte bei Homalopsis aer (Taf. III. Fig. 21.) und bei Tropidonotus (Fig. 22. 23.); der übrige Theil der hintern Wand ist häutig mit glatten oder wenig ausgezackten Seitenrüden.

6. Bilden sich die hintern Querfortsätze in der ganzen hinten Wand oder im grössten Theil derselben, und zwar immer von oben beginnend, zu einer Knorpelplatte um, die
entweder nur den häufigen Zwischenräumen entsprechende getrennte Öffnungen zeigt (Taf. III. Fig. 3, 7. von Crotalus und Herpetodorays), oder im untern Theil eine Längsteilung mit unregelmäßigen Rändern, wie bei Coluber pullatus (Fig. 36.) und Eryx turcicus oder auch ganz solid ist und die Art ihrer Entstehung nicht mehr verrät. So verhält sich Cephalopeltis und Anguis (Taf. IV. Fig. 2.). Bei Crotalus und Coluber pullatus werden durch die hintere Knorpelplatte die untersten Kehlkopfringe noch zusammengehalten, nachdem sie bereits an den Seiten sich von einander abgelöst haben.

II. Die Ringe der vorderen Wand verschmelzen, jedoch so, dass Spuren der Interstitien zurückbleiben. Python und Boa (Taf. III. Fig. 42, 46.) zeigen den Übergang, indem die untern Kehlkopfringe vorn noch ganz getrennt sind, und nur an den oberen die Verschmelzung beginnt. Auch bei den andern obliteriren in der Regel die Interstitien von oben nach unten. Die Residuen derselben zeigen sich entweder in der Mitte als schmale Querstreifen oder rundliche Öffnungen (Taf. III. Fig. 42., Taf. IV. Fig. 8, 12, 14, 17., Taf. V. Fig. 23, 27, 30.), oder auch als unregelmäßige Figuren in der Mitte oder an den Seiten (Taf. IV. Fig. 50, 52, 70.). Häufig wächst eine Brücke von den Knorpelringen über die Mitte der Interstitien, so dass aus einem Querspalt mehrere seitliche Öffnungen werden (Taf. IV. Fig. 4, 29, 30.). Ein Schritt zu dieser Bildung kommt schon bei einigen Schlangen vor, z. B. an den oberen Kehlkopfringen von Hydrophis (Taf. III. Fig. 11.) und Coluber pullatus (Fig. 35.); bei Coluber flavescens (Fig. 28.) sieht man ein schmales Knorpelstreifchen von der vorderen Spitze herabsteigen, welches den zweiten Ring nicht erreicht. Regelmaßig aber ist die Form unter den Schlangen nur bei Python und Boa; unter den Sanriern fand ich sie bei Cyclodus, Ophisaurus, Zonurus, den Geckonen, bei Tropidurus torquatus, Phrynocephalus, Ophryoësa, Draco, Calotes und Hydrosaurus, und unter den Schildkröten allein bei Cisternon clausum.

Auch bei dieser Abtheilung kommen wieder mancherlei Verschiedenheiten in der Bildung der hinteren Wand vor, welche die der vorigen Gruppe wiederholen.

1. Die hintere Wand ist, wie die vordere, aus unvollkommen verschmolzenen Ringen gebildet. Die Zahl derselben ist gleich bei Tropidurus torquatus (Taf. IV. Fig. 29.), bei Calotes dagegen (Fig. 54.) ist die Spur der Trennung zwischen beiden oberen Ringen verschwunden und nur noch zwischen den beiden untern sichtbar.

2. Die hinteren Fortsätze sind zu einer Knorpelplatte verbunden, welche nach oben solid ist, nach unten aber aus einander tritt, so dass die Mitte des untern Theiles nur künstig ist. So bei Python (Taf. III. Fig. 44.) und bei Boa (Taf. III. Fig. 47.), ferner bei Phrynocephalus (Taf. IV. Fig. 31, 34.), wo man noch Einkerben, den Ringen entsprechend, wahrnimmt, bei Hydrosaurus und Cisternon (Taf. V. Fig. 17.).

3. Die hintere Wand ist oben und unten vollständig geschlossen, in der Mitte aber bleibt eine Lücke in dem Knorpelrahmen, über welchen die Haut gespannt ist. Cyclodus (Taf. IV. Fig. 5.), Ophisaurus (Fig. 8.) und Ophryoësa (Fig. 51.). Bei Ophisaurus ist es der letzte Kehlkopfring, welcher den Rahmen unten schliesst, bei Cyclodus sind es zwei, bei Ophryoësa 4 Ringe.

4. Ganz solid ist die hintere Wand im Kehlkopf bei Zonurus (Taf. IV. Fig. 4.), den Geckonen (Fig. 15, 18.) und bei Draco.
III. Die Ringe des Kehlkopfs sind an der vorderen Wand theilweise zu einer einfachen Platte verschmolzen. Einer oder mehrere derselben aber, und zwar immer die untersten, werden noch durch Interstitien oder durch Reste von Interstitien getrennt.

Unter den genannten müssen aber Sceloporus, Tropidurus und Alligator noch eine besondere Abtheilung bilden. Bei den übrigen verschwinden die Interstitien von oben nach unten allmälig (s. Pseudopus Taf. IV. Fig. 9. — Iguana Fig. 45. — Podinema Fig. 70. — Testudo Taf. V. Fig. 23. — Sphargis Fig. 30.) und wenn auch nur der letzte Kehlkopfring noch getrennt ist (wie bei Ameiva Taf. IV. Fig. 68.), so ist er nicht entschieden vom Kehlkopf abgesetzt. Bei Sceloporus (Taf. IV. Fig. 24. 25.) und Tropidurus (Fig. 27. 28.) dagegen ist allein der unterste Ring des Kehlkopfs noch abgesetzt, während die übrigen zu einer einfachen Platte verschmolzen sind, und dieser untere Ring scheint, wenn man den Kehlkopf von vorn betrachtet, ganz abgelöst und ist nur noch an der hinteren Wand mit ihm verbunden. Umgekehrt hängt bei Alligator lucius (Taf. V. Fig. 1. 2. 5.) der unterste Ring blos durch eine schmale Brücke in der Mitte der vorderen Fläche mit dem übrigen Kehlkopf zusammen und verhält sich fast ganz wie der folgende Trachealring. Er wird auch, indem die Brücke verschwindet, zum ersten Trachealring, wie man durch Vergleichung mit dem Kehlkopf der andern Krokodile sieht.

In dieser Abtheilung erst beginnt die vordere Wand des Schildknorpels sich eigenthümlich zu formen. Der untere Rand der verschmolzenen Ringe bei Sceloporus und Tropidurus ist auf eine zierliche und regelmässige Weise ausgeschweift. Es bildet sich ein Längskiel bei Cyclura (Taf. IV. Fig. 42.), eine vordere Längsfirste bei Lacerta (Fig. 60.) und Tropidurus (Fig. 27.), und eine Querfirste, so dass der obere und untere Theil der vorderen Wand in einem Winkel zusammengeschlossen bei Emys (Taf. V. Fig. 18. 21.)

Nach der Bildung der hinteren Wand kann man die hierher gehörigen Reptilien folgendermassen weiter abtheilen:

1. Ganz offen ist die hintere Wand allein noch bei Iguana tuberculata (Taf. IV. Fig. 16.). Die hinteren Querfortsätze treten jederseits zu unregelmässig ausgezackten Knorpelplatten zusammen. Zwischen den beiden Knorpelplatten bleibt eine schmale Spalte.

2. Oben geschlossen, nach unten weit offen ist die hintere Wand bei Pseudopus (Taf. IV. Fig. 10.) und Cyclura (Fig. 43.). Die obere Commissur ist bei der letzteren sehr schmal, im Winkel gebogen und durch einen Einschnitt von den Knorpelplatten getrennt, welche durch Verschmelzung der hintern Querfortsätze entstanden sind, eine Bildung, welche die bevorstehende Trennung des obern Schlussstücks andeutet; ich muss auf dieselbe noch zurückkommen.

3. Oben und unten geschlossen, in der Mitte offen finden wir das Knorpelgerüst der hintern Wand bei Sceloporus (Fig. 25.), Tropidurus (Fig. 28.), Trapelus (Fig. 36.), Podinema (Fig. 71.) und bei Chamaeleopsis.

4. Der Schildringknorpel ist hinten wie vorn aus unvollkommen verschmolzenen Knor-
pelringen gebildet bei Lacerta (Fig. 61.) und Ameiva (Fig. 69.), und unter den Schildkröten bei Trionyx und Sphargis (Taf. V. Fig. 15. 31.), und zwar hält die Obliteration in der hinteren und vorderen Wand gleichen Schritt bei den genannten Sauriern; die Trennung der Ringe reicht in der hinteren Wand weiter hinauf bei Trionyx, in der vorderen bei Sphargis.

5. Ganz solid ist die hintere Wand der Cartilago thyreocricoida nur bei Alligator lucius (Taf. V. Fig. 3.) und bei Testudo (Fig. 24.). Auch bei Chelonia sieht man keine Spur der Zusammensetzung aus Ringen (Taf. V. Fig. 28), dagegen, wie bei Emys, die Abtrennung des obersten Theils (d Fig. 28. 29.), von welchem später ausführlicher die Rede sein soll.

IV. Jede Spur von häutigen Zwischenräumen in der vorderen Wand ist verschwunden. Nichts deutet mehr auf die Entstehung des Kehlkopfs aus einzelnen Querfortsätzen oder Ringen; zugleich nähert sich dadurch die vordere Fläche des Schildringknorpels in der Form mehr oder weniger dem Schildknorpel der höheren Thiere. Er ist noch ganz glatt und mit gerade untern Rand bei Phrynosoma (Taf. IV. Fig. 22.) und Anolis (Fig. 40.); bei Alligator palpebrosus und Crocodilus biporcatus erscheint der untere Rand in der Mitte eingebogen, an den Seiten ausgeschnitten (vom oberen Rande wird sogleich die Rede sein), aber noch ohne vorderen Winkel oder Kiel (Taf. V. Fig. 8.). Der erste Trachealknorpel hat bei Alligator einen dem untern Rand des Ringschildknorpels entsprechenden, convexen untern Rand, bei Crocodilus ist er ganz schmal und kurz und liegt zwischen den abwärts steigenden seitlichen Fortsätzen des Ringschildknorpels. * Endlich entwickelt sich bei Polychrus (Taf. IV. Fig. 38.) und bei Rhamphostoma (Taf. V. Fig. 11.) die vordere Fläche der Cart. thyreocricoida völlig zu der Gestalt, die der Schildknorpel vieler Säugethiere und des Menschen hat. Sie ist wie aus zwei im Winkel an einander stossenden verschoben rhombischen Flächen zusammengesetzt. In dem Ausschnitt, den die unteren Ränder derselben mit einander begrenzen, liegt wie bei Crocodilus biporcatus der unvollkommene erste Trachealring (I Fig. 36. Taf. IV., Fig. 11. Taf. V.).

In diese Abtheilung gehört auch Chamaeleo (Taf. IV. Fig. 55—59.), dessen Kehlkopf wegen seiner ganz anomalen Bildung der Gegenstand vielfacher Untersuchung gewesen ist. Es öffnet sich nämlich bei diesen Thieren die Respirationscænal zwischen dem Kehlkopf und dem ersten Luftrohrring in einen kugeligen, häufigen Sack, der von der Trachea aus mit Luft gefüllt wird. Diese Bildung scheint allen Arten der Gattung Chamaeleo zuzukommen; ausser dem gemeinen Chamäleon (Chamaeleo africanus) ist sie auch bei Chamaeleo pumilus von Meckel ** nachgewiesen worden; kein anderes Reptil aber hat ein

ähnliches Organ. Zwar wird auch von den Calotes, den Basilisken, Leguans, Anolis, u. A. angegeben, dass sie einen Kehlsack besitzen, der aufgeblasen werden könne; ich habe aber bei keinem dieser Thiere, so wenig als Cuvier, * weder eine Öffnung des Kehlkopfs oder der Luftröhre, noch einen mit denselben zusammenhängenden Sack unter der Haut gesehen, und glaube, dass der Schein des Aufblähens der Kehlgegend nur entstehen kann durch Vor- treten der untern Zungenbeinhörner (Taf. IV. Fig. 48. A), an welche die Haut der Kehlgegend befestigt ist.

In der ruhigen Lage des Kehlkopfs nach dem Tode ist die Spalte geöffnet. Ich habe den Kehlkopf mit dem geöffneten Kehlsack auf Taf. IV. Fig. 58. vergrössert dargestellt und der Angabe von Treviranus nichts weiter hinzuzufügen, als dass die beiden Knorpelfortsätze, die sich besser mit einem Vogelschnabel vergleichen liessen, an ihren einander zugekehrten Flächen rinnenförmig ausgehöhlt sind, und dass der obere auf der obern Fläche eine Firste trägt. An diese Firste und dem untern Theil der vorderen Fläche des Schildringknorpels befestigt sich ein dünnenes Septum, welches von der obern Wand des Kehlkopfs herabhängt, nach unten mit einem scharfen, halbmondformigen Rand endet (Fig. 58. K**). Ein ähnliches sehr kleines häufiges Bändchen heftet den untern Schnabel an die Vorderfläche der Trachea und hat einen freien geraden Rand (Fig. 58. K'). Durch beide wird der Kehlsack unvollkommen in zwei Hälften geschieden, die durch eine weite runde Öffnung mit einander communiciren. In der Abbildung ist die rechte Hälfte des Kehlsacks bis auf ein kleines zurückgeschlagenes Restchen am obern Rande weggewonnen.

Was die hintere Wand des Kehlkopfs bei dieser vierten Abtheilung betrifft, so kommt auch an ihr keine Abtheilung in Ringe mehr vor; sie ist oben durch Knorpel geschlossen und unten häufig bei Anolis (Taf. IV. Fig. 41.), bei Polyergus und Chamaeleon ist sie fast ganz solid wie die vordere Wand, nur am untern Rande befindet sich noch ein kleiner rundlicher Ausschnitt (Fig. 39. 57.). Endlich stellt der Schildringknorpel des Phrynosoma (Taf. IV. Fig. 23.) und der Krokodeile (Taf. IV. Fig. 3. 12.) einen ganz vollständigen Knorpelring dar, der nur hinten etwas niederer ist, als vorn.

* Vorlesungen über vergleichende Anatomie Bd. IV. p. 386.
Nachdem nunmehr die Entwicklung des Schildringknorpels im Allgemeinen dargestellt worden ist, verdienen die Fortsätze desselben an der vorderen oberen und an der hintern Spitze, so wie an den Seiten noch eine besondere Betrachtung. Ich handle zuerst von der vorderen oberen Spitze.

Sie entsteht dadurch, dass die obersten vorderen Querfortsätze in einen Winkel zusammentreten, und dies geschieht deutlich überall, wo die einzelnen Kehlkopfringe in der vorderen Wand noch getrennt sind. Man betrachte Taf. III. Fig. 10. (Elaps lacteus), Fig. 18. 23. 28. 33. 48., Taf. IV. Fig. 2. Eben so verhält sich auch Ilydia und Amphisbaena. Bei vielen Schlangen werden die zwei einfachen aufsteigenden und unter einem Winkel zusammenstossenden Querfortsätze selbst wieder, indem sie sich einander nähern, durch eine oder mehrere Querleisten verbunden. Am häufigsten findet sich nur eine solche Querleiste zwischen den bogenförmig convergirenden Knorpelstreifen der Spitze (Taf. III. Fig. 8. 11. 21. 24.), zwei kommen vor in Taf. III. Fig. 15. 16. 17. 37., drei bei Dryophis und Herpetodryas (Taf. III. Fig. 13. 40.). Man kann in Zweifel sein, ob die seitlichen, aufsteigenden Knorpelstreifen hier wirklich als Querfortsätze oder Kehlkopfringe zu deuten seien, da sie selbst wieder Querstufen abschicken. Allerdings (D. n. der B. des Kehlkopfes von Euprepes (Taf. IV. Fig. 7.) erklärt sich das Verhältniss leicht. Hier convergiren die obersten vorderen Querfortsätze gegen ihren Ursprung von absteigenden Seitenknorpeln hin und ihre Wurzeln verschmelzen gleichsam. Denkt man sich die Interstitien der Ringe etwas weiter, so gleicht der Kehlkopf den eben beschriebenen Schlangenkehlköpfen und es lässt sich einsehen, wie der zweite Querring, statt unmittelbar vom Seitenknorpel, vom ersten Querring entspringen kann.

Der obere Winkel, den die beiden oberen, zusammenstossenden Querfortsätze mit einander bilden, ist zuweilen abgerundet (Taf. III. Fig. 18. 23.), meistens aber spitz und kann sich in einen längeren oder kürzeren schmalen Fortsatz verlängern, den ich den Processus epiglotticus nennen werde. Es soll aber damit nicht gesagt werden, dass, wo ein Processus epiglotticus am Kehlkopf, auch immer eine Epiglottis an der Zungenwurzel sich finde. Vielmehr entwickeln sich diese beiden Theile, wie noch später gezeigt werden soll, ganz unabhängig von einander. Um einen Processus epiglotticus legen sich zuweilen die Giessbeckenknorpel so an, dass er in seiner ganzen Länge von denselben umfasst wird und nicht über die Glottis hervorragt, und so findet sich umgekehrt oft eine blos häutige Querfalte hinter der Zunge, die die Glottis bedeckt, aber von den Kehlkopfknorpeln ganz unabhängig ist. Ein solcher Processus epiglotticus findet sich bei Naja tripudians. Der Processus epiglotticus ist anfangs nur kurz, zugeschnitten oder abgerundet. So erscheint er bei Vipera berus (Taf. III. Fig. 4.), Naja tripudians (Fig. 7.), Elaps lemniscatus (Fig. 9.), Typhlops (Fig. 49.) und Eryx turcicus. Man überzeugt sich dabei sogleich, dass auch die Abwesenheit oder der Mangel dieses Fortsatzes, obgleich nicht so sehr individuellen Schwankungen unterworfen, wie die Verwachsung oder Ablösung der Giessbeckenknorpel, doch für die zoologische Systematik ganz ohne Werth ist. Der Processus epiglotticus findet sich bei Naja tripudians und fehlt bei Naja haje (Fig. 8.), er findet sich bei Elaps lemniscatus und fehlt bei Elaps lacteus (Fig. 10.). Unter drei

Eine Spur von Verbreiterung zeigt sich an der Spitze des Processus epiglotticus bei Crotalus (Taf. III. Fig. 3.) und Tropidonotus matrix (Fig. 22.), welche sich später zu der zungenförmigen Gestalt der Epiglotis höherer Thiere ausbildet. Ganz isolirt aber steht die Form, welche der Processus epiglotticus in Coluber pholidostictus annimmt. Er ist Taf. III. Fig. 30. von vorn, Fig. 31. von der Seite und Fig. 29. g so dargestellt, wie er sich vor der Präparation im Zusammenhang mit der Zungenwurzel verhält. Er hat die Gestalt eines Beils mit abgerundeter, aber scharfer Schneide und dringt, wenn er niedergedrückt wird, in die Höhle des Kehlkopfs durch die Glottis ein, so dass er die Glottis nicht bedeckt, sondern verschliesst.

Wenn nunmehr die vorderen Hälften der Kehlkopfringe zu einer durchbrochenen oder vorderen Spitzen soliden Knorpelmasse verschmelzen, so stellt der obere Rand derselben in seiner einfachen Form einen mehr oder minder stark gewölbten Bogen dar, wie in Taf. IV. Fig. 4. 8. 12. Kehlkopfringe 22., Taf. V. Fig. 15. 16. 23. Es bildet sich aber dieser Rand nach zwei verschiedenen Richtungen aus, indem in der Mitte desselben entweder eine Einbiegung erscheint, oder der mitltere Theil sich in eine Spitze erhebt. Eine ganz schwache Einkerbung des oberen Randes findet sich schon bei Anguis (Taf. IV. Fig. 2.), deutlicher tritt diese Bildung hervor in den Kehlköpfen der Geckonen (Taf. IV. Fig. 14. 17.), ferner von Pseudopus (Taf. IV. Fig. 9.) von Lacerta (Fig. 60.) und Ameiva (Fig. 68.), und von Emys (Taf. V. Fig. 18. 21.). — Zugespitzt dagegen ist der obere Rand des Kehlkopfs bei Python (Taf. III. Fig. 42.), bei Podinema (Taf. IV. Fig. 70.) und bei Sphargis (Taf. V. Fig. 30.) und es zeigt sich hierin wieder der Anfang eines Processus epiglotticus. Auch bei Chelonia (Taf. V. Fig. 27 — 29.) erhebt sich der mittlere Theil des oberen Randes in eine Spitze, die sich nach hinten krümmt; zu jeder Seite derselben ist der Rand zweimal eingebogen und von der Spitze steigt an der inneren Fläche des Knorpels eine Längsfurche herab, die sich bei den Vögeln weiter zu der longitudinalen Scheidewand des Kehlkopfs und selbst der Luftöhre entwickelt.

Es kommt endlich auch eine Combination aus den beiden genannten Formen vor, indem der obere Rand eine mittlere Einbiegung hat, aus deren Tiefe sich wieder eine Spitze, selbst ein Processus epiglotticus erhebt. Beim allen Kroko'dilen ist der obere Rand tief ausgeschnitten und vorn in der Mitte des Ausschnitts liegt die kurze Spitze, die noch niedriger ist, als die Seiten des Kehlkopfs (s. Taf. V. Fig. 1. 8. 11.). Bei Sceloporus (Taf. IV. Fig. 24.), Tropidurus torquatus (Fig. 29.), Trapelus (Fig. 35.), Iguana (Fig. 45.) und Chamaeleo (Fig. 56.) ist dagegen zu jeder Seite des Processus epiglotticus, den der übrigen Rand des Schlingerknorpels weit überragt, ein mehr oder minder tiefer Ausschnitt.

Ich wende mich jetzt zum Processus epiglotticus des Kehlkopfs mit verschmolzenen Processus epiglottici, Ringen bei Boa und den Sauirern (denn bei den Kroko'dilen und Schildkröten kommt dieser Knorpel nicht vor). Ueber sein Verhältniss zur Schleimhautfalze an der Zungenwurzel (Plica epiglottici) gilt für die Sauire, was oben bei den Schlangen bereits bemerkt wurde. Da-
gegen wird er für die Classification der Saurier schon von grüßerem Werth, denn er fehlt constant bei den Eidechsen (Monitor, Ameiva, Lacerta), Geckonen, Schildringen und Amphibien, und findet sich fast constant bei den Agamen, denn nur bei Phrynosoma habe ich ihn vermisst, und bei Chamaeleo. Doch kommen auch Uebergänge vor, denn die vordere Spitze des Schildringknorpels von Podinema (Taf. IV. Fig. 70. c) ist kaum kürzer als der obere Fortsatz des Tropidurus microlophus (Fig. 27. c).

Länge und Gestalt des Processus epiglotticus sind sehr verschieden. Ganz eigen tümlich, breit und platt ist er bei Boa (Taf. III. Fig. 46.). Auch bei Tropidurus microlophus ist er kurz, breit und platt (Taf. IV. Fig. 27.) und trägt eine mittlere Firste als Fortsetzung der vorderen Längsfirste des Schildringknorpels. Einen ganz einfachen, cylindricalen, ein wenig zugeschmolzenen Knorpelstreifen stellt der Processus epiglotticus von Tropidurus torquatus dar (Taf. IV. Fig. 29.). Nun breitet die Spitze dieses Stiels sich aus und plattet sich ab, wie bei einigen Schlangen, so bei Chamaeleo (Fig. 56.), wo das Ende fast gerade abgestutzt ist. Unter mancherlei Gestalten, immer breiter im Verhältniss zum cylindricalen Stiel, zungen-, myrtenblatt-, lanzensförmig sehen wir die Spitze des Processus epiglotticus bei Trachydips (Fig. 35.), Polyphprus (Fig. 38.), Anolis (Fig. 40.), Calotes (Fig. 52. 53.). Sie nähert sich ganz der Form der Epiglottis höherer Thiere bei Phrynosephalus (Fig. 30.), Iguana (Fig. 45.), Cyclura (Fig. 42.), hier auch durch den halbkugeligen Knorpel der vorderen Fläche, und es scheint zur Bildung einer Sägethier-Epiglottis nichts weiter zu fehlen, als dass der Stiel, wodurch das zungenförmige Blättchen am Schildringknorpel befestigt ist, sich in fibröses Gewebe verwandle. Auffallend kurz ist der Stiel, auf welchem der Kehldeckel sitzt, bei Sceloporus (Fig. 24.) und bei Ophryoessa (Fig. 50.) ist er gänzlich verschwunden. — Bemerkenswerth ist noch für die Folge, dass bei Iguana der Processus epiglotticus an seiner Basis einen kurzen, von den Seiten comprimirten, nach hinten schneidenden Fortsatz trägt, der sich zwischen die Cart. arytaenoidea legt. Wir sahen eine ähnliche Längsfirste der vorderen Wand im Larynx der männlichen Pipa und werden derselben bei Chelonia und allgemeiner bei den Vögeln wieder begegnen.

Dies sind die Metamorphosen des Processus epiglotticus bei den Reptilien. Ich komme nunmehr zur Beschreibung der hintern obren Spitze. Auch aus dieser wächst zuweilen ein dem Kehldeckelfortsatz analoge Spitze hervor; sie ist am auffallendsten bei Coelopeltis lacertina (Taf. III. Fig. 16. d), von der Gestalt eines Fünfecks mit concave Seiten. Etwas ähnliches sieht man bei Coluber pullatus (Fig. 36. d) und unter den Sauriern bei Sceloporus torquatus, Tropidurus microlophus, Anolis velifer etc. (Taf. IV. Fig. 25. 28. 41. d).

Der eigen tümlichen Bildung der hintern Spitze bei Cyclura (Taf. IV. Fig. 43. d) wurde schon gedacht; sie ist schmal und durch einen tiefen Einschnitt von dem übrigen abgerundeten obren Rand des Schildringknorpels getrennt. Die Vermuthung liegt nahe, dass eine völlige Abtrennung der beiden dienen Schenkel, welche die Spitze bilden, vom übrigen Knorpel bevorstehe. Bei den Sauriern fand ich solche Abtrennung nicht, bei den Schlangen in einem Fall (Coluber rufiventris, Taf. III. Fig. 34. d), ob sie aber normal oder nicht etwa gar durch einen Fehler der Präparation entstanden war, konnte ich nicht entscheiden, da mir ein zweites Exemplar dieser Species nicht zu Gebote stand. Dagegen ist die Ab-
trennung des obener Theils der hindem Wand Regel in den Gattungen *Emys* und *Chelonia* unter den Schildkröten.

Der obere Halbring, welcher bei *Cinosternon* (Taf. V. Fig. 17. d) die Giessbeekenknorpel trägt, ist bei *Emys* durch zwei Nühte jederseits von den Seitenwänden des Schildringknorpels getrennt und zu einem selbstständigen Kehlkopfstück (Fig. 19. d) geworden. Es hat, da es die Gelenkflächen für die Giessbeekenknorpel trägt, den wesentlichsten Theil der Bedeutung der *Cartilago cricoidea* der Säugethiere und soll mit diesem Namen bezeichnet werden. Der Rest des bisher Schildringknorpel genannten Ringes ist daher Schildknorpel. Er ist bei *Emys*, wie der Schildknorpel der Säugethiere, hinten offen, doch liegen einige unvollkommene Knorpelstückchen in dem unteren häufigen Theil der hintern Wand. Bei *Chelonia* (Taf. V. Fig. 27—29.) ist der Schildknorpel auch hinten völlig geschlossen und trägt in der Mitte des obener Randes eine Hervorragung (β'). Dieser entsprechend ist der untere Rand der *Cart. cricoidea* concav; seine Seitenränder stehen theils mit der *Cart. thyreoida*, theils mit den untern Winkeln der Giessbeekenknorpel in Verbindung, theils liegen sie frei; der obere Rand endlich ist in eine nach hinten umgebogene Spitze (δ') verlängert.

Uebrigens begegneten wir dieser Abtrennung des hintern obener Theils der Kehlkopfwand bei den Schildkröten nicht zum ersten Mal. Man erinnert sich, dass auch unter den Batrachier im und zwar bei dem Weibchen von *Pipa* der obener Theil der hintern Stimmladenwand als ein besonderer Knorpel erschien (Taf. II. Fig. 12. 13. o), der schon dort als *Cart. cricoidea* bezeichnet wurde. Wie aber aus der *Cart. cricoidea* der genannten Reptilien der Ringknorpel der Säugethiere wird, kann erst später gezeigt werden.

Schliesslich muss ich noch eine Eigenthümlichkeit des Geckonengehöcks erwähnen, die sonst nirgends vorkommt. Es ist ein kurzer, cylindrischer, querer Fortsatz (6' Taf. IV. Fig. 14—18.), welcher breit und gleichsam mit zwei Wurzeln von der Seitenwand des Schildringknorpels entspringt und dem Seitenmuskel oder Oeffner des Kehlkopfsiegangs zur Anheftung dient.

Ich kann jetzt zu der S. 34 abgebrochenen Beschreibung der weiten Entwicklung *Cartilago ary-

Bojanus hat in Taf. XVII. Fig. 76—78. seines unsterblichen Werkes Abbildungen des Kehlkopfes der *Emys europaea* gegeben und unsere *Cartilago cricoidea* als ein besonderes Knorpelstück, ebenfalls mit δ bezeichnet dargestellt. Er nennt sie: „Lamellula cartilaginea posterior, exeo margini cartilaginis cricoideae imposita.“ Seine *C. cricoidea* ist unser Schildknorpel. — Von *Chelonia* hat sie *Mayer* beschrieben und abgebildet (Analekten p. 40. Taf. III. Fig. 4. g) als „hintern Fortsatz des ringförmiigen Knorpel.“
in denen die Trennung von Giessbecken- und Schildringknorpel wohl etabliert ist, ist die Grundform des ersteren das Dreieck. Mit der einen Seite oder Basis sitzt er auf dem oberen Rand des Schildringknorpels; diese Seite kann gerade sein, concav oder convex und selbst winklig (Taf. IV. Fig. 44.), je nachdem der obere Rand des Schildringknorpels gerade oder gebogen ist. Die zweite Seite des Dreiecks sieht nach hinten, gegen die entsprechende Seite des Giessbeckenknorpels der andern Seite und begrenzt den Kehlkopfeingang ganz oder teilweise. Die dritte Seite endlich ist die äussere, oft sehr genau mit dem vorderen oberen Rande des Schildringknorpels oder dem Seitenrande des Processus epiglotticus verbunden (Taf. III. Fig. 36. 46., Taf. IV. Fig. 45.), oft auch durch einen anscheinlichen Zwischenraum von demselben getrennt (Taf. IV. Fig. 53.), so dass zwischen beiden eine leere häufige Falte, entsprechend dem Ligamentum ary-epiglotticum der Säugethiere, sich hinzieht. Fehlt der Processus epiglotticus, so ist die äussere Seite nach Entfernung der Weichteile ebenfalls ganz frei, wie die innere (Taf. IV. Fig. 22.); wie die innern sind auch die äussern Seiten beider Giessbeckenknorpel einander zugewandt, aber vor der Präparation durch Muskeln und Bänder zu einer geschlossenen Wand verbunden.

Der Giessbeckenknorpel liegt bald ganz in der hintern Fläche des Kehlkopfs, bald mehr zur Seite, mitunter reicht er auch auf die vordere Wand herum und dann kann die innere Seite zur hintern, die äussere zur vorderen werden, wie in dem eben erwähnten Fall, wo der Processus epiglotticus fehlt. So sehen auch seine beiden Flächen immer die eine in die Höhle des Larynx, die andere gegen den Oesophagus, aber in Beziehung auf das ganze Thier bald nach vorn und hinten, bald nach innen und aussen.

Es ist unnöthig, alle kleinen Variationen anzuführen, die sich in der Gestalt des Giessbeckenknorpels bemerken lassen. Er ist mehr oder weniger nach der Fläche gebogen, stumpfwinklig (Taf. IV. Fig. 13. 26. 57.), oder spitzwinklig (Taf. IV. Fig. 46.), selbst an der obern Spitze abgestutzt und daher viereckig (Taf. IV. Fig. 32.). Nur einige auffallende Formabweichungen will ich noch kurz berühren.

Die obere Spitze ist in einem Winkel nach innen gebogen bei Phrynosoma und Cyclura (Taf. IV. Fig. 22. 44.). Bei Emys und Chelonia (Taf. V. Fig. 19. 29.) ist sie ebenfalls im Winkel gekrümmt, aber nach aussen, wodurch der Giessbeckenknorpel dieser Thiere dem des Menschen samt den Santorinischen Knorpeln auffallend ähnlich wird. Seine Basis ist bei den genannten Schildkröten im Verhältniss zur Spitze sehr breit. Sie ruht noch zum grössten Theil auf dem Schildknorpel. Die hintere Spitze dagegen und der untere Theil des innern Randes articulirt mit dem Ringknorpel (S. Fig. 28.); der übrige Theil des innern Randes und der äussere sind frei.

Nach einer andern Seite hin verändert sich der Giessbeckenknorpel bei den Krokodilen, Trionyx, Cinoternum und Testudo. Die Cart. arytaenoidea des Gavial (Taf. V. Fig. 12. 13.) hat noch die gewöhnliche Gestalt, nur ist sie niedriger und ihre Basis so lang, dass nur ein kleiner Theil des oberen Randes des Schildringknorpels vorn und hinten nicht von derselben bedeckt wird. Schon beim Krokodil (Fig. 10.) und bei Trionyx (Fig. 15.) wird der untere Rand des Giessbeckenknorpels concav und erhebt sich in seiner Mitte vom oberen Rand des Schildringknorpels. Daraus wird zuletzt die abweichende Gestalt des Giessbeckenknorpels bei Alligator (Fig. 2. 9.), wo er jederseits wie ein schmaler Bogen von
hintern zum vordern Rand des Ringschildknorpels gespannt ist, hinten breit, vorn schmaler, und mit einem spitzen Fortsatz auf dem höchsten Theil des Bogens (* Fig. 2. 9.*). Ein Theil der Seitenwand des Larynx zwischen Giessbeckenknorpel und Schildringknorpel ist daher bei diesen Thieren nur häufig. Auch die anomalen Giessbeckenknorpel von Cinosternon und Testudo lassen sich leicht aus der Form von Trionyx ableiten, so dass diese gleichsam in der Mitte zwischen den Krokodilen und diesen Schildkröten steht. Es sitzt nämlich hier der vordere Winkel der Cart. arytaenoidae nicht mehr auf, sondern liegt frei im Fleisch. Der vordere Ast des Bogens krümmt sich rückwärts oder verschwindet, und so bleibt die schmale, bogen- oder stiefelförmige Giessbeckenknorpel (Taf. V. Fig. 17. 24.) übrig.

Endlich ist noch, als einer ungewöhnlichen Form, des Giessbeckenknorpels der Gecko-Geckonen, zu gedenken. Er ist nur eine bisquitörmige Platte (Taf. IV. Fig. 16. a), die mit dem innern Ende durch eine Art Schuppennäht, auf der inneren Seite des Schildringknorpels befestigt, mit dem andern Ende nach vorn und dem entsprechenden Knorpel der andern Seite entgegengeneigt ist; dabei biegt er sich zugleich etwas nach innen über die Kehlkopfsöffnung. Muskeln und Haut überziehen diese Knorpel in der Art, wie es durch die dunkle Fläche l der bezeichneten Figur angedeutet ist. Bei Platydactylus (Fig. 18. a) ist der Giessbeckenknorpel etwas kürzer als bei den übrigen und steht mit der Basis auf einem Fortsatz des Schildringknorpels.

Was endlich die Art der Verbindung zwischen Giessbecken- und Schildringknorpel angeht, so geschieht sie zuerst durch blose Naht, bei den Schlangen nämlich, bei welchen die Trennung der Cart. arytaenoidae noch schwankend ist, dann bei den Python und Boa und den niedern Formen der Sauser durch ein etwas weiträufiges, färbiges Gewebe, so dass der Zwischenraum mitunter ziemlich bedeutend ist (s. Taf. III. Fig. 44.). Eine solche bloßzellgewebige Verbindung scheint auch noch bei vielen andern Sauern vorzukommen, wo wegen der Kleinheit der betreffenden Organe die Sache nicht leicht zu entscheiden ist. Eine wirkliche Articulation, durch Kapselgelenk, konnte ich mit Bestimmtheit nirgends nachweisen und nur die Glätte der Gelenkflächen liess eine solche bei den Krokodilen und Schildkröten vermuten.

Kehlkopfmuskeln der beschuppten Reptilien.

Ganz allgemein kommen den Schlangen zwei Paar lange, platte und schmale Kehlschlangenkopfmuskeln zu, welche sich zum Theil noch an die Trachea setzen, und von ihrer Function am schicklichsten Vorstrecker und Zurückzieher, oder, um der bisherigen Betrachtungsweise tren zu bleiben, Aufheber und Herabzieher des Kehlkopfs genannt werden.

Der Aufheber (Taf. III. Fig. 2. 41. f) entspringt immer vom Unterkieferast seiner Seite, bald in der Mitte desselben (Coluber Korros), bald mehr gegen die vordere Spitze hin (Coluber pullatus, Crotalus, Naja), dicht neben dem Vorwärtszieher des Zungenbeins (Fig. 41. l). Er geht unter der Zunge neben dem Kohlkopf nach unten und setzt sich.

* Vorwärtszieher des Kehlkopfs d'ALTON. Mueller's Archiv. 1834. p. 355. Taf. VII. Fig. 5. P.
** d'ALTON, s. s. O. Fig. 5. M.
bei *Python* (Fig. 41.) in mehrere Bündel gespalten, an die hintere Fläche des Kehlkopfs, zuweilen auch der ersten Trachealringe.

Der Ursprung des *Herabziehers* (ge. Fig. 2. 41.) * ist nicht bei allen Arten derselben.

Bei *Crotalus, Lachesis, Coluber angulatus* und *Coluber pullatus* entspringt er von den Rippen gemeinschaftlich mit einem Muskel, der von den Rippen zum Unterkiefer geht, und trennt sich erst später von diesem ab. Bei allen andern Schlangen, die ich untersuchte, ist er isolirt und kommt vom Zungenbein, wie bei *Python* (Fig. 41.). *Vipera Ber- rus* steht in der Mitte zwischen beiden Extreoren, indem der Herabzieher zwar vom Zungenbein entspringt, aber noch durch ein Bündel mit dem Rippenkiefermuskel zusammenhängt. Es wiederholt sich also hier der Fortschritt der Entwicklung in derselben Weise, wie wir ihn bereits bei den Batrachien beobachteten, dass nämlich der Ursprung der Kehlkopfmuskeln von Skelettheilen des Stammes auf das Zungenbein übergeht. Der Herabzieher des Kehlkopfs kreuzt sich mit dem Aufheber, er geht hinter diesen weg und gelangt zur Spitze des Kehlkopfs, hier verschmilzt er mit dem eigentlichen Erweiterer, von dem sogleich die Rede sein soll. Eine Ausnahme macht *Naja*, der Zurückzieher derselben ist sehr kurz, geht nicht an den Kehlkopf, sondern an die Trachea, 8—9 Ringe unterhalb des Kehlkopfs, und kreuzt sich nicht mit dem Aufheber, der sich nahe an der Spitze des Kehlkopfs ansetzt.

Den Aufheber des Kehlkopfs wage ich nicht mit Bestimmtheit zu deuten und auf den entsprechenden Muskel anderer Reptilien zurückzuführen. Da die Theile des Skelets und das Zungenbein einander hinsichtlich der Muskelursprünge vertreten können, und da der vordere Theil des Zungenbeins der Schlangen ganz verloren geht, so könnte dieser Muskel einem der Zungenbein-Stimmladenmuskeln der nackten Reptilien entsprechen, z. B. der Portion *m* (Taf. I. Fig. 12.) von *Menopoma*, die sich ebenfalls mit der tiefer entspringenden Portion *m"* kreuzt; er könnte aber auch den *Geniohyoideus* und *Hyothyrioideus* zugleich vorstellen. Der Herabzieher aber ist unzweifelhaft identisch mit dem *Dilatator glottidis* der geschwänzten Batrachier. Wie dieser entspringt er bald von Querfortsätzen (Rippen), bald vom Zungenbein, wie dieser geht er an den oberen Rand des Kehlkopfs, und auch von ihm sondert sich, wie bei *Siredon* (Taf. I. Fig. 5.), ein eigenthümlicher Ringmuskel des Kehlkopfs ab, der sich dann weiter in mehrere Muskeln von verschiedener Wirkung spaltet. Der Muskel *m"* von *Menopoma* hat auch in Form und Verlauf die grösste Äehlichkeit mit dem Zurückzieher des Kehlkopfs, auch jener ist zugleich Zurückzieher und Öffner der Glottis. —

Der Zurückzieher des Kehlkopfs verschmilzt mit dem eigenthümlichen Kehlkopfmuskel, doch lässt sich dieser immer als ein besonderer Muskel darstellen. Er ist bei den meisten Schlangen einfach, wie bei *Python* (Taf. I. Fig. 41—43. h), * entspringt von den Seitentheilen der vorderen und von dem untern Theile der hintern Wänd, bei *Boa* auch von dem *Proces-

* Rückwärtszieher des Kehlkopfs. d’ALTON, a. a. O. p. 356. Fig. 5. Q.

sus epiglotticus, geht um den Giesskannenknorpel seiner Seite herum und von unten schießt aufwärts, und setzt sich an den inneren Rand des Giessbeckenknorpels, der den Eingang in den Kehlkopf begrenzt, zuweilen geht er auch über den Knorpel weg in die Schleimhaut des Kehlkopfeingangs (Dipsas annulatus). Bei Dipsas bucephalus inseriert er sich auch an die hintere Spitze des Schädelknorpels. In all diesen Fällen scheinen seine Fasern grösstentheils die Wirkung zu haben, dass sie den Kehlkopf öffnen. Ich nenne ihn also den Erweiterer des Kehlkopfeingangs, Dilatator aditus laryngis, obgleich vielleicht ein kleiner Theil der hintersten untereinander verflochtenen Fasern auch zum Verschliessen der Kehlkopfspalte wirken kann. Er zerfällt bei Liophis cobella, Homalopsis aer und einigen andern (Taf. III. (Fig. 38. 39.) in zwei Portionen h' und h" dadurch, dass die vorn entspringenden Fasern Zerfällt in 2 an den vorderen oder äussern Rand des Processus arytaenoides sich befestigen, von dem innern oder hintern Rand aber neue Fasern ihren Ursprung nehmen, die zugleich mit denen, welche von der hintern Spitze des Schädelknorpels kommen, an dem Rand des Stimmladen-Ringes gehen.

Interessanter für die weitere Entwicklung ist die Art, wie sich bei Vipera Berus Vipera Berus, der Dilatator thelt. Es findet sich hier ein Längsmuskel aus zwei Portionen, die grösere h' (Taf. III. Fig. 5. 6.) entspringt vom untern Rande der vorderen und Seitenfläche des Schädelknorpels und geht nach aufwärts zum äussern Rande des Kehlkopfeingangs, indem sie nur die vordere Spitze frei lässt. Die kleinere Portion h" kommt von der hintern Wand des Kehlkopfes, ihre Fasern laufen schieß nach oben und vorn und verflechten sich endlich mit denen der ersten Portion. Höher hinauf an der hintern Wand, zum Theil bedeckt von der zweiten Portion des Vorigen, liegt der zweite Muskel (k'), welcher vom oberen Rande der hintern Spitze zur Cartilago arytaenoidae geht und, wie es scheint, noch als Hilfsmuskel des vorigen wirkt, indem er die Cart. arytaenoidae nach hinten herabzieht. Das Bündel h" steht der Richtung der Fasern nach in der Mitte zwischen den Muskeln h' und k'. Denkt man sich diese Portion des Dilatator mit dem Constrictor k' verbunden und beide mit einander unter der grössten Portion des Dilatator (h') weiter nach der vorderen Wand verlaufend, so erhält man die beiden Muskeln des Kehlkopfes, wie sie constat bei allen höheren Reptilien und auch bei einigen Schlangen vorkommen. Zu den Schlangen mit zwei eigenthümlichen Kehlkopfmuskeln gehören Bungarus, Elaps lemniscatus, Coronella laevis, Coluber pholidostictus und C. rufescens (s. Taf. III. Fig. 26. 32.). Der Dilatator ist M. dilatator laryngis, hier als Seitenmuskel des Kehlkopfes übrig, welcher bald gerade an der Seite von unten nach oben verläuft, wie bei Coronella (Fig. 26. h), bald in schiefen Richtung von vorn nach hinten um den Kehlkopf herumeht, wie bei Coluber pholidostictus (Fig. 32. h). Immer setzt er sich an den innern Rand der Cartilago arytaenoidae oder des Processus arytaenoideus. An den Seiten von ihm bedeckt, von und hinten frei, verläuft quer um den Larynx der Muskul, der sich dem Verlauf und der Wirkung nach dem Compressor der Bruchach vergleichen lässt (Taf. III. Fig. 26. 32. k). Er geht bei Bungarus von der vorderen Spitze zur hintern Spitze des Schädelknorpels und kann also nur den Larynx von der Seite zusammendrücken; bei Coluber pholidostictus verläuft er von der Wurzel des Processus epiglotticus zur Basis der Cart. arytaenoidae, und zugleich vermeischen sich die Fasern beider gleichnamigen Muskeln an der hintern Wand des Larynx. Er ist also

Der Compressor der Geckonen (Taf. IV. Fig. 19. 20. k) nimmt seinen Ursprung vom ganzen Seitenrande des Zungenbeins, geht unter dem Dilatator über den Seitenfortsatz (Fig. 17. 18. b) der äussern Wand des Kehlkopfs herum und inserirt sich an der hintern Wand des Schildringknorpels. Er ist bei Hemidactylus triedrus in zwei Portionen getheilt, von der obere schief nach unten, die untere nach innen vor jener liegt und schief nach oben verläuft, so dass beide sich kreuzen. Diese Muskeln haben aber keinen Einfluss auf die Cart. arytenoidea, sondern bewegen nur die hintere Wand des Kehlkopfs gegen das Zungenbein oder drücken die Seitenränder desselben in die Kehlkopfhöhle hinein und verengen den Eingang. So ist es auch bei den genannten Schildkröten, Testudo (Taf. V. Fig. 25. k) und Chelonia. Die Fasern des Compressor kommen von dem Theil des Zungenbeinkörpers, der durchbrochen und auch von Membran ausgefüllt ist (bei unserer grossen T. elephantopus ist indess auch diese Stelle knorpelig, nur dünner). Sie entspringen ringsum vom Rande der Grube, in welcher der Larynx ruht, treten convergierend zusammen unter dem Dilatator durch und vereinigen sich mit einander hinten auf dem Ringknorpel; doch gehen bei Testudo einige Fasern in die Basis der Giesskannenkörpels, so wie auch in die Haut der Speiseröhre über, und bei Chelonia hebt sich ein Theil der Muskelfasern an die Cart. cricoidea (Taf. V. Fig. 28. d).

Bei Pseudopus nimmt der Compressor zwar auch vom mittlern Theile des Zungenbeins seinen Ursprung, aber nicht vom Körper, sondern von einem hättigen dünnen Fortsatz am vorderen Theil des Körpers, welcher schon in der Substanz der Zunge liegt; bei den meisten Sauriern aber ist durch ein rundliches Band Ligamentum hyothyroideum der Larynx an die Spitze des Zungenbeinkörpers befestigt, und von diesem Bande entstehen die kreisförmigen Muskelfasern des Kehlkopfs. So verhält es sich bei allen Baumagamen, Scinken, bei
Zygynis und Ophisaurus. Das Ligamentum hyothyroidium (n Taf. IV. Fig. 47. 48.) tritt bei den Agamen durch die Zungenwurzel und zwar zwischen beiden *Mm. hyoglossi* durch an die vordere Fläche des Ringschildknorpels, und dient, ehe es sich in dieser verliert, den Fasern des Compressor (ebendas. k) zur Anheftung. An der hintern Fläche des Kehlkopfs gehen die Muskelfasern beider Compressoren in einander über (Fig. 49. k), zuweilen vermischen sie sich theilweise auch von an der Ursprungsstelle.

Vom Zungenbein geht wieder der Ursprung des Compressor auf den Kehlkopf selbst Von Zungenbein über, doch nicht mit einem Mal, sondern durch eine Zwischenstufe, wo die Muskelfasern zum Theil noch vom Zungenbein oder dem Ligamentum hyothyroidium, zum Theil von der gleich vorderen Wand des Schildringknorpels sich entwickeln.

Vom Zungenbein und zugleich mit einigen Bündeln vom Schildknorpel selbst kommt der *M. compressor* bei *Emys*, verhält sich übrigens ganz wie bei *Chelonia* und setzt sich auch wie bei dieser hinten an den Ringknorpel fest. *Bojanus* hat ihn als *Constrictor glottidis* in Fig. 79, seiner *Anatome testudinis* abgebildet und mit 20 bezeichnet. In der Erklärung heisst es: a fenestra hyoidis membrana oriundus ad lamellulam cartilagineam (unsere *Cart. cricoidea*) desinens. Am Ligamentum hyothyroidium und zum Theil auch am Schildknorpel, sitzt der Ursprung des Compressor bei den amerikanischen Erdagamen (*Phrynosoma, Sceloporus, Tropidurus*) und bei den Ameisen, Lacerten und Monitoren (s. Taf. IV. Fig. 65—67. k von *Lacerta viridis*); zuweilen gehen die Fasern der entsprechenden Muskeln vorn oder hinten in einander über. Hierher gehören auch die Krokodeile, zugleich aber ist in dieser Gattung, wie auch bei der ausgebildetsten Formen unter den Batschiern, *Hyla* und *Rana*, der *M. compressor* in zwei gesonderte Portionen zerfallen. Die grösse (Taf. IV. Fig. 4. 5. k') erhält ihre Fasern von der Bandmasse, wo durch die Spitze des Larynx ans Zungenbein befestigt ist, und vom oberen Theil der vorderen Fläche des Schildringknorpels. Die Fasern beider Seiten hängen vorn in einer Art *Linea alba* zusammen. Die kleinere Portion (k" Fig. 4) entspringt von dem seitlichen Theil des hinteren untern Randes des Ringschildknorpels, tritt mit der grössern unter einem spitzen Winkel zusammen und beide verbundene Portionen vereinigen sich endlich mit den gleichnamigen der andern Seite in einer hinteren *Linea alba*. Sie gehen, indem sie über die hinteren Schenkel der Giesskannenknorpel wegehen, an den äussern Rand derselben einige Fasern ab und nehmen Fasern auf, welche vom innern Rande der genannten Knorpel zur hinteren *Linea alba* gehen.

Endlich sind diejenigen zu nennen, bei welchen der Ursprung des Compressor allein von Kehlkopf auf den Kehlkopf beschränkt ist. Es gehören dahin die Erdagamen der alten Welt, ferner die *Anguis, Zonurus* und *Chamaeleo*. Entweder sind die Compressoren vorn durch Verschmelzung ihrer Fasern oder durch eine Schene verbunden, und befestigen sich hinten an den Schildringknorpel und die *Cartilago arytenoidae* ihrer Seite (*Ophryoësa, Trapelus, Chamaeleo*), oder es verflechten sich ihre Fasern an der hinteren Wand und bleiben vorn gesondert, z. B. bei *Phrynocephalus* (Taf. IV. Fig. 33. 34. k), *Zonurus*.

Viel beständiger, als der Compressor des Kehlkopfs, ist der Dilatator *aditus laryngis in seinem Verlauf. Beim Alligator (Taf. V. Fig. 4.) nimmt er noch ein paar Fasern von Zungenbeinkörper auf; sonst gehört sein Ursprung ganz allgemein nur dem Kehl-
Die Kehldeckel und Stimmbänder.

Bei den Schlangen liegt die Spalte, die zur Respirationshöhle führt, an der Scheide der Zunge. Bei den übrigen beschuppten Reptilien befindet sich dieselbe, wie bei den Säugetieren, dicht hinter der Zungenwurzel, bei Phrynosoma sogar in der Substanz der Zunge selbst. Um diese Anomalie zu begreifen, werfe man zuerst einen Blick auf das Verhältniss des Kehlkopfeingangs zur Zunge bei Polychrus marmoratus (Taf. IV. Fig. 37.); hier endet die Zunge nach hinten in zwei freie manschettenartig ausgerandete Blätter, welche an ihrer Basis halbmondförmig ausgeschnitten sind, mit dem hinteren Theil ihres inneren Randes an einander liegen und den Kehlkopf bedecken. Zwischen den halbmondförmigen Ausschnitten bleibt eine ovale Öffnung, welche eben einen engen Zugang zum Eingang des Kehlkopfs (F) übrig lässt. Ich erwähnte, als ich diese Bildung sah, eine Gattung zu finden, bei welcher die beiden Zungenlappen an den Boden und unter sich verwachsen. Diese Gattung ist Phrynosoma (Taf. IV. Fig. 21.). Wenn der Kehlkopf niederliegt, so sieht man ihn kaum, und bemerkt kaum die Furche, die ihn von der Substanz der Zunge trennt; seine Öffnung (F) ist nach vorn gerichtet. Erst wenn man ihn aufrichtet, zeigt sich der Boden der Mundhöhle, welcher unmittelbar unter dem Larynx nur von einer dünnen Schleimhaut bekleidet wird. Die Substanz dagegen, welche den Kehlkopf überzieht und an den Seiten ununterbrochen in die Substanz der Zunge übergeht, ist mit denselben blätterförmigen Falten und Zotten, wie die ganze Zunge, bedeckt und setzt sich, weiter nach unten, scharf gegen die glatte Schleimhaut der Speiseröhre ab.

Es wurde schon früher erörtert, dass der Name Glottis mit Unrecht der Spalte enthellt worden ist, welche bei den Reptilien und Vögeln von der Höhle des Schlundes in die Höhle des Kehlkopfs führt, dass auch die Ränder dieser Spalte nicht den Ligamenta glottidis, sondern den Ligamenta aryepiglottica der Säugerthiere entsprechen. In dem Ursprunge dieser Ränder, ich nannte sie Plicae arytaenoidae, aryglotticae oder aryepiglotticae, kommen bei den beschuppten Amphibien drei Formen vor.

1. Hinter der Zunge, bei den Schlangen am hintern Theil der Zungenscheide, weichen die beiden Ränder des Kehlkopfeingangs sogleich auseinander, wie bei den nackten Reptilien, und bilden eine einfache Längenspalte in der vorderen Wand des Schlundes.

* Bojanus bildet ihn auf Taf. XVIII. Fig. 77. 79. No. 19. von Emys ab und nennt ihn in der Beschreibung: M. cricoarytaenoides, Dilatatator glottidis, a cricoideae latere ad nodulum summum Cart. arytaenoidae.
2. Es erhebt sich an der Wurzel der Zunge, bei den Krokodilen auf der Fläche des Zungenbeins, eine mittlere unpaare Längsfalte, die sich dann erst in die beiden Falten theilt, welche den Eingang zum Kehlkopf begrenzen. Der Kehlkopf ist dann durch eine Art Frenulum an den Boden der Mundhöhle gehäftet. Bei den Saugethiern findet sich als Rest dieser einfachen Falte das *Ligamentum glossoepiglotticum.* Es kann bekanntlich auch Muskelfasern enthalten, welche sich von der Zungenwurzel zur obenn Fläche des Kehldeckels begeben und diesen der Zunge nähern.

Ich will nunmehr die Reptilien, die ich untersuchte, in 3 Gruppen ordnen. Zu der Kehlkopfengegang ohne Hautfalte.

In der zweiten Gruppe, mit longitudinalen Frenulum des Kehlkopfeingangs, stehen Kehlkopfengegang mit longitudinalen obem Rand zwischen dem Kehlkopf und der Zungenwurzel im Boden der Mundhöhle hervor. Frenulum und bildet die bekannte quere Scheidewand derselben; deshalb erhebt sich die Längsfalte nicht von der Zungenwurzel, sondern von der obenn Fläche des Zungenbeins. Die bereits beschriebene, beiförmige Epiglottis des *Coluber pholidostictus* (Taf. III. Fig. 29. G) kann nur aus dieser Bildung, der Längsfalte namentlich, hervorgegangen sein.

In der einfachsten Gestalt ist die häutige Epiglottis nur eine schmalere oder breitere Häutige Epiglottis mit geradem, freiem Rand hinter der Zungenwurzel, die an den Seiten so in die Haut des Schlundes übergeht, dass sie, beständig auf den Kehlkopf herabgedrückt, nicht fähig.

ist, sich aufzurichten. So erscheint sie bei den Schildkröten ausser Testudo. Sie ist abgebildet von Chelonia Midas Taf. V. Fig. 26. G. Aehnlich verhält sie sich auch bei Podina. Der Epiglottis höherer Thiere ähnelicher, als ein kurzes, zungenförmiges Blättchen mit bogenförmigem, auch seitlich freiem Rand und nur nach vorn angeheftet, erscheint sie bei Ophisaurus, Pseudopus und bei Coluber flavescens (Taf. III. Fig. 27. G). Zonurus cordylus (Taf. IV. Fig. 11. G) hat einen in drei Blätter getheilten häutigen Kehldeckel, über dessen mittleres Blatt von dem Kehlkopfeingang aus eine Furchcse fortsetzt.

Eine knorplige Epiglottis in Gestalt eines kurzen, schmalen, selbst seitlich etwas comprimirirten Wärzchen haben Crotalus, Lachesis, Vipera, Bungarus, Naja und Eryx. Sie ist am meisten entwickelt bei Crotalus (Taf. III. Fig. 1. G), bei einem Exemplar von 3½ Fuss Länge 1" lang. Bei diesen Thieren liegt entweder der Processus epiglotticus oder, wo ein solcher fehlt (Bungarus, Naja haje), die vordere Spitze des Schildringknorpels in der Hautfalze. Von auffallender Form, breit und stark, mit wulstigem, in der Mitte etwas eingebogenem Rand ist die Epiglottis der Boa (Taf. III. Fig. 45. G), kurz und quer abgestutzt die des Tropidurus microlophus. Die Epiglottis aller übrigen Saurier ist zungenförmig, breit und mit convexem Rand, aber von sehr verschiedener Länge. Sie bildet eine fast unmerkliche Hervorragung bei Trachelus und Polychrus, deutlicher ist sie bei Scoloporus, Phryncocephalus, Anolius, Iguana, Chamaeleopsis, Draco, Calotes und Chamaeleo (Taf. IV. Fig. 55. g), am stärksten entwickelt bei Cyclura. Bei keinem Reptil aber bedeckt weder die häufige, noch die knorplige Epiglottis, wenn sie herausgedrückt ist, den Eingang so vollkommen, wie bei den Säugthieren, immer schützt sie nur den vor- oder obersten Theil derselben, und bei den Reptilien, deren Kehlkopfeingang zum Theil nach hinten, zum Theil aber nach oben gegen die Zungenwurzel führt (z. B. Chelonia Taf. V. Fig. 26.), legt sie sich nur über den nach oben gerichteten Theil der Spalte.

Der Eingang zum Kehlkopf befindet sich bei den meisten beschuppten Reptilien, wie bei den nackten, zwischen den hintern Rändern, der Giessbeckenknorpel, indem die vorderen sich dicht an den Processus epiglotticus oder an die vordere Spitze des Kehlkopfes anlegen, und wo eine solche fehlt, durch den Compressor des Larynx mit einander verbunden werden. Die Ränder der Kehlkopfspalte sind dick, wulstig und stehen bei den Schlängen meistens offen, bei den höheren Reptilien dagegen sind sie nach dem Tode, und also wie es scheint, auch in der Ruhe einander genähert, und der Kehlkopfeingang ist geschlossen.

Bei denjenigen Sauriern, welche einen ordentlichen Kehldeckel besitzen, lösen sich die obren Spitzen der Cartilagines artyanaeidae etwas von dem Processus epiglotticus des Schildringknorpels ab, die Schleimhaut des Kehlkopfs tritt zwischen diese Theile als ein ganz

Aus diesem Grunde aber gehen die den Ligamenta arypepiglottica entsprechenden Falten nicht von der Epiglottis, sondern vom Zungenbein aus; es sind, der früheren Definition nach, Ligamenta arhyoidea (Taf. V. Fig. 4. 22, l'); zwischen ihnen liegt bei den genannten Thieren wie bei den Mammalien ein Theil der Kehlkopfspalte, während jedoch der grössere Theil der Spalte noch von den hinteren Rändern der Giessbeckenknorpel, den Plicae arytaenoidae, begrenzt wird. (Ebendas. l").

Ich schliesse mit der Betrachtung der Stimmbänder. Dieselben sind unter den be-Stimmbändern.

Im Innern des Kehlkopfs von Lacerta findet sich jederseits, entsprechend dem unteren Rand der Cartilago arytaenoidea, eine sehr schmale und dünne Falte (Taf. IV. Fig. 64. m'). Der Lage nach stellt sie das Stimmband vor. Es scheint mir aber, als lisse sich der hohe, kurze, zirpennde Ton, den die Eidechsen zuweilen von sich geben, noch eher aus einer Schwingung der Ränder des Kehlkopfeingangs erklären, als aus einer Schwingung dieser Falten, die weder gespannt, noch einander genähert werden können. Ein ähnliches Stimmband hat Cyclura, bei Ameiva, Podinema und Hydrosaurus sah ich keine häufige Hervorragung am Kehlkopf, sondern nur einen durch den unteren Rand des Giessbeckenknorpels veranlassten Vorsprung (Taf. IV. Fig. 72. M) an der Stelle des Stimmbandes.

Die Krokodile besitzen einen zur Tonbildung geeigneten Apparat dadurch, dass die Crocodili schmalen Giessbeckenknorpel mit ihrem unteren Rande in die Kehlkopfhöhle ragen, und dass
unter ihnen die Schleimhaut des Kehlkopfes eine tiefe Tasche bildet (Taf. V. Fig. 6. s). *
Es entsteht so eine dicke, aber ziemlich freie Falte m, welche, wenn die Giessbeckenknorpel einander genähert werden und die Glottis verengt ist, wohl geeignet sein muss, den tiefen, rauhen Ton anzuzeigen, wodurch diese Reptilien sich hörbar machen sollen. ** Bei Alligator liegt die Schleimhaut dicht am Giessbeckenknorpel an, beim eigentlichen Krokodil scheint sie noch einen schmalen, blos membranösen Saum, ein wirkliches Stimmband zu bilden. ***

Die vollkommensten Stimmbänder haben die Geckonen und Chamäleo. **** Bei den Geckonen sind es ziemlich breite Hautfalten in der Gegend der Basis des Giessbeckenknorpels, die vom vorderen zum hinteren Rande des Rimschildknorpels verlaufen. Ein Stimmband war bei einem 4 1/2" bis zum After messenden Hemidactylus triedrus 1 1/2" lang.

Bei Chamaeleo bildet die Schleimhaut des Kehlkopfes eine sehr ansehnliche Duplicatur mit freien, scharfem Rand, die von der Articulation des Giessbecken- und Schildringknorpels an der hinteren Kehlkopfwand zu der Spitze der knorplichen Leiste (Taf. IV. Fig. 59. b) verläuft, welche senkrecht an der Innenfläche der vorderen Wand herabsteigt.

Diese Leiste bildet einen dreieckigen, nach oben schmalen, nach unten sich zusätzenden Vorsprung nach innen, durch den die Kehlkopfhöhle unvollkommen in zwei seitliche Hälf ten getheilt wird. Aehnliche longitudinale Vorsprünge nach innen, von der vorderen und von der hinteren Wand ausgehend, bemerken wir schon bei der männlichen Pipa. Sie finden sich sonst unter den Reptilien nur noch bei Chelonia, Testudo und Iguana, † bei der erstern (Taf. V. Fig. 28. q) ist die Förste eine Fortsetzung des Procëssus epiglotticus, sie reicht nicht weit nach unten. Bei Testudo ist die ganze vordere Wand durch eine nur häufige und sehr wenig vorspringende Leiste getheilt. †† Viel allgemeiner sind diese Längsleitungen bei den Vögeln, zu welchen ich jetzt übergehe.

** Kehlkopf der Vögel.**

Die Zahl, Form und Verbindung der Knorpelstücke, welche den Kehlkopf zusammen setzen, ist in der Classe der Vögel viel geringer Verschiedenheiten unterworfen, als in der bis jetzt betrachteten Classe der Reptilien, und die zahlreichen Angaben der Schriftsteller stim men ziemlich genau mit einander überein.

Im Allgemeinen unterscheiden dieselben einen Hauptknorpel (oder Knochen, denn der obere Kehlkopf der Vögel ist sehr oft vollkommen knöchern), welcher die ganze vordere

** v. Humboldt in v. Humboldt und Bonpland, observations de zoologie et d'anatomic comparée. p. 11.

*** Eine solche giebt auch Meckel an vom Krokodil (vergleichende Anat. VI. p. 438.).

**** Die Stimmbänder des Chamaeleo erwähnt Mayer, Analekten p. 44. — Meckel (vergleichende Anat. VI. p. 439.) nennt die Stimmbänder des Gecko halbmondformig.

† Auch nach Meckel's Angabe (vergleichende Anat. VI. p. 447.) kommt bei Iguana an der entsprechenden Stelle ein knorpiger Vorsprung vor.

Dennach erweisen sich die viereckigen Knorpel fast nur als die nach hinten umgebogenen, niedrigeren Seitentheile des Sockels, und in der That sind sie mit diesem oft vollkommen verwachsen, so dass auch Viele den Sockel und die viereckigen Knorpel zusammen als einen einzigen ringförmigen, hinten offnen Knorpel beschreiben.

In der hintern Kehlkopfwand, zwischen den beiden innern Rändern der viereckigen Knorpel, meistens aber etwas vor derselben in die Kehlkopfhöhle hineinragend, liegt ein vier- tes, unpaares Stück. Es überragt mit seinem obern Rande die viereckigen Knorpel, reicht aber mit dem untern Rande häufig nicht so weit nach unten, als die übrigen genannten Theile. Fast immer ist es viel schmaler als hoch und scheint nur bestimmt, die Lücke zwischen den innern Rändern der viereckigen Knorpel auszufüllen.

Der unpaare Knorpel trägt aber zugleich an seinem obern Rande jederseits eine Gelenkfläche für zwei schmale, meistens dreiseitige Knorpel, welche zunächst die Stimmritze begrenzen. Diese dreiseitigen Stücke liegen mit der einen langen Seite hinten zuerst auf dem viereckigen Knorpel ihrer Seite, dann weiter nach vorn auf dem obern Rande des Sockels, doch nicht vollkommen dicht auf; die andere lange Seite ist frei, von Schleimhaut überzogen, und begrenzt den Eingang zum Kehlkopf; die Spitze tritt nach vorn an die obere Spitze des Sockels, die schmale Basis articulirt mit dem unpaaren Knorpel. Diese Theile sollen vorläufig die dreiseitigen heissen. Ein Blick auf Taf. V. Fig. 32. wird die Beschreibung verständlicher machen.

So leicht diese Theile in der Natur wiederzufinden sind, so schwer ist die Deutung. Ansichten der Schriftsteller über die Deutung dersehnen, wenigstens dürfte man dies aus dem Widerstreit der Meinungen schliessen. Fabricius Ab Aquapendente* vergleicht die dreiseitigen Knorpel mit den Giessbeckenknorpeln. Die Cartilago cricoidea sei nicht vollkommen gebildet und von dem Schildknorpel nicht ganz genau geschieden (weiter unten sagt er, dass der Schildknorpel fehle); deswegen sei es am besten, anzunehmen, dass der Kehlkopf der Vögel nur aus zwei Theilen bestehe, der paarigen Cart. arytaenoidea und einer C. innominata. Die Epiglottis fehlt nach Fabricius allen Vögeln.

* Observations de zoologie. p. 2.
Auch Perrault* gibt nur drei Theile im Vögelkehlkopf an, die beiden Giessbeckenknorpel und einen Ringknorpel.

Vico d'Azyr **) nimmt das vordere, dreieckige Stück oder den Sockel für die Cart. thyroiidea und die Knorpel der hintern Wand für Giessbeckenknorpel. Er sagt, mehr elegant als richtig, dass der Larynx der Vögel nicht doppelt sei, sondern in zwei Partien zerfallen, von denen die eine, der Stimmritzenteil, am oberen Ende der Trachea geblieben, der andere Theil, welcher den Stimmbändern entspreche, an die Theilungsstelle der Bronchien herabgerückt sei.

Das grösste Stück des Vögelkehlkopfs hält Cuvier**** für analog dem Ringknorpel des Menschen und er bemerkt, dass dieser Theil zuweilen in drei Stücke zerfallen. Giessbeckenknorpel, Schildknorpel und Kehldeckel sollen fehlen; doch werden sowohl der unpaare, als die beiden dreiseitigen Knorpel beschrieben. Die Functionen des Kehldeckels sollen nach Cuvier die knorpilgen Spitzen versehen, die auf den Rändern der Stimmritze stehen; später wurde dieser Warzen nicht blos die Function, sondern auch die morphologische Bedeutung des Kehldeckels, wie sich zeigen wird, mit Unrecht übertragen.

Tiedemann† hält den Sockel für das Analogon des Schildknorpels; von den vierseitigen Knorpeln sagt er, dass sie Ähnlichkeit mit den Ringknorpel der Säugethiere haben; den unpaaren lässt er unbestimmt; die dreiseitigen nennt er Giessbeckenknorpel.

** a. a. O. p. 195.
*** Beiträge zur Anatomie und Physiologie der Thiere. Erstes Heft. p. 60.
**** Vorlesungen über vergleichende Anatomie Bd. IV. p. 338.
† Zoologie. Bd. II. p. 644.
†† Philosophie anatomique etc. p. 246. Pl. V. Fig. 60 — 63.

Folgendes ist Meckels Ansicht*: der Sockel sei Schildknorpel; die beiden viereckigen Stücke seien die Hälfte des Ringknorpels, die zwar nicht untereinander in der Mittellinie verwachsen, auch sich gewöhnlich sehr eng mit dem ersten verbunden, doch aber meistens sehr nahe aneinander liegen und fest untereinander verbunden seien. Den unpaaren Knorpel nimmt Meckel für die im Rudiment vorhandenen und zu einem verwachsenen Giessbeckenknorpel. Er stützt sich darauf, dass auch andere doppelte Theile der Säug thiere bei den Vögeln einfach würden, z. B. die weiblichen Zeugungstheile (was aber nicht durch Verschmelzung beider, sondern durch Verkümmerung der einen Hälfte geschieht), dass auch der Körper des Zungenbeins sich nicht in die Breite, sondern der Länge nach ausdehne. Die Enge und Schmalheit des ganzen Kehlkopfs scheint ihm auch dafür zu sprechen. Die dreiseitigen Knorpel, welche von den Meisten den Giessbeckenknorpeln verglichen werden, sollen keilförmige Knorpel sein, entweder allein oder mit den verknöcherten Stimmbändern.

Carus** vergleicht den Sockel dem menschlichen Schildknorpel, die viereckigen den Giessbeckenknorpeln, die dreiseitigen den Santorinischen und hält den unpaaren Knorpel für ein eigen tümliches, die Santorinischen Knorpel verbindendes Mittelstück oder auch für einen Theil des Ringknorpels, dessen andern Theil die ersten unvollständigen, d. h. hinten offenen Luftröhrenringe darstellen würden.

Endlich ist nach der Deutung von R. Wagner*** der Sockel gleich dem Schild-

Henle, Beschreibung des Kehlkopfs.
knorpel, der unaare Knorpel sammelt den beiden vierckigen gleich dem Ringknorpel, der drei-
seitige gleich dem Giessbeckenknorpel.

Wenn es zweifelhaft sein kann, in wiefern der Kehlkopf der Vögel mit dem der Säu-
geathiere übereinstimme, so ist dagegen nichts leichter, als die vollkommene Identität desselben
mit dem Kehlkopf der Schildkröten nachzuweisen, wenn man von den einfacheren Formen un-
ter den Vögeln ausgeht. Wir sahen den Schildknorpel bei Chelonia ringförmig und voll-
kommen geschlossen, bei Emys fast vollkommen ringförmig, aber hinten offen. Diesem
Knope entspricht bei allen Vögeln, wo der Kehlkopf noch vollkommen knorplig ist, der
Sockel sammelt den beiden, seitlich demselben gehängten vierckigen Knorpe. So allge-
mein auch behauptet wird, dass diese drei Knorpel bei jungen Vögeln getrennt seien und im
Alter verwachsen, so findet doch gerade das Gegenteil Statt. Es gibt viele Gattungen, bei
welchen das ganze Leben hindurch die drei Theile zu einem einzigen verwachsen, oder, rich-
tiger gesprochen, noch ungetrennt sind. Dahin gehören z. B. die straussartigen und die Pa-
pageien. Bei jenen ist der ganze Knorpel, den ich nunmehr Schildknorpel nennen werde,
knorplig, bei diesen knöchern. Auch bei dem Schwan ist weder in der Jugend, noch im Al-
ter eine Spur von Theilung des Schildknorpels zu sehen. Beim Pelikan ist die Mitte des-
selben verknöchert, aber die Seitenflächen sind ganz knorplig und mit dem mittleren Theil con-
tinuürlich verbunden. Die Trennung des Schildknorpels in drei Stücke etabliert sich zuerst
dadur, dass der mittlere Theil der vorderen Wand und die beiden äusseren Ecken, die in
der hinteren Wand zusammenstossen, verknöchern und dass zwischen diesen drei Knochenfel-
dern jederseits ein grösserer oder kleineres Knorpelfeld übrig bleibt. So bildet bei Sterna,
Ciconia, Ardea, Cygnetus u. A. der Schildknorpel, wenn man ihn von allen übrigen Knor-
peln getrennt, hinten geöffnet und ausgebretet hat, ungefähr ein stumpfwinkeliges Dreieck, des-
sen äussere Winkel etwas abgestutzt sind, dessen stumpfe Spitze der vorderen Spitze des Kehl-
kopfs entspricht. In diesem Dreieck ist bei Sterna die Mitte unregelmässig verknöchert,
dann folgt jederseits eine vierckige, knorplige Stelle, und zu äusserst wieder, mit scharfem
Rand beginnend, eine Verknöcherung von rhombischer Gestalt. Denkt man sich beim Storch
(vergl. Taf. V. Fig. 34.) die Fläche des Schildknorpels durch longitudinale Linien in sechs
Felder getheilt, so bilden die beiden mittleren eine zusammenhängende Knochenplatte (A) von
regelmässig fünfeckiger Gestalt, das zweite jederseits (B) ist knorplig, das dritte (C) knö-
chern. Bei Cygnetus ist nur der obere Theil der vorderen Fläche nebst den äusseren Seiten-
theilen verknöchert, alles übrige knorplig und Alles zusammenhängend.

Ebenso verhalten sich auch in der Jugend die Kehlköpfe derjenigen Vögel, bei denen
im Alter die Trennung bewerkstelligt ist. Diese erfolgt also offenbar nur dadurch, dass die
Knorpelplatte jederseits zwischen den einander gegengeschreitenden Verknöcherungen allmäh-
lich schwindet. Wenn nur noch eine dünnne Knorpelleiste übrig ist, so zerfällt der Schildknorpel
schon bei der Manipulation leicht in drei Stücke, noch ehe eine wirkliche Naht oder ein Ge-
lenk zwischen denselben gebildet ist. Dies scheint mir bei den hühnerrartigen der Fall zu
sein. In der Figur 32. Taf. V., welche ich als typische Form des Vogelkehlkopfes zur Ver-
gleichung beigefügt habe, ist die Cart. thyroidea hinten, im Gelenk, getrennt und an einer
Seite nach vorn umgelegt; man sieht die Stelle, wo ein Rest der frühern Knorpelwand den
vorderen und Seitentheil trennt, und kann sich leicht erklären, wie hier, auch bei vollkommener

Was die Gestalt des Schildknorpels betrifft, so kenne ich nur eine einzige Familie, bei welcher, so wie bei den Krocodilen unter den Reptilien, jede Spur der Entstehung aus Luftrohrrippenringen verschwunden ist, dies sind die Papageien. Die übrigen haben zwar meistens den grössten Theil aus einem Stück gebildet; doch finden sich allgemein gegen den unten Rand noch Spuren einer Theilung in einzelne Ringe. Die Zahl derselben wechselt sehr. Ich fand nur eine schmale Querspalte in der vorderen Wand bei Strix asio, Sterna stolidus und Muscicapidae; zwei bei Rhea und Cygnus, von denen die untere noch weit auf die hintere Wand zurückschreitet, zwei bis drei bei den Hühnern (vergl. Taf. V. Fig. 32.), vier bei Crypturus, vier, aber die beiden oben sehr schmal bei Falco albicilla. Bei Pelecanus reicht die Knochenplatte, ganz solid, an der vorderen Fläche bis zum unten Rand; Spuren der Trennung in einzelne Ringe zeigen sich aber wieder an den Seitentheilen. Der Storch hat drei von unten nach oben an Länge abnehmende Querspalten, aber auch der solide Theil ist bis zum oben Rande quergestreift, durch abwechselnd stärkere und schwächere Ossification, Alles noch Andeutungen der Art, wie der Schildknorpel zuerst bei den Reptilien entsteht. (Vergl. Taf. V. Fig. 34.)

Bei keinem der Vögel, die ich untersuchte, ist der Schildknorpel hinten geschlossen, obschon die beiden Enden desselben hinten oft so genau zusammengesiigt sind, dass sie auf den ersten Blick continuirlich verbunden zu sein scheinen. Dies ist zumal bei den Raubvögeln und Papageien der Fall, wo der Knorpel zugleich gegen die Mitte der hintern Wand sehr schmal ist und an der Stelle, wo beide Enden sich zusammenschliessen, in die Höhle des Kehlkopfs vorspringt. Die eigenthümliche Form des Schildknorpels oder Schildknochen bei den Papageien hat schon Meckel sehr richtig beschrieben. Der vordere Theil desselben hat ganz die Gestalt eines Steigbügelbogens, wenn man sich die obere Oese, durch welche der Steigriemen tritt, undurchbohrt denkt. Er ist an dieser breitesten Stelle bei einem Kehlkopf, der über $9\frac{1}{2}''$ im Durchmesser hat, nur $2''$ und an den seitlichen absteigenden Bogentheilen nicht $\frac{1}{2}''$ hoch. In dem Rumm, den diese einschliessen, liegen unvollkommene Luftrohrrippen, bloss quere Knorpelstreifen, fünf bis sechs an der Zahl, dann folgen sogleich vollkommen geschlossene Luftrohrrippen. Es wiederholt sich also, nur in stärkeren Maasse, das Verhältniss von Rhumphostoma (Taf. V. Fig. 11.). Die untern Spitzent der Bogen gehen continuirlich, aber ganz scharf jede in ein schwach convexes Bogenstück über, welches in der hintern und Seitenwand liegt, so zwar, dass die Concavität eines jeden nach unten und etwas nach innen gewandt ist.

Logitudinaler Vorsprung im Inneren.

Obere Spitze.

Bei den Verhandlungen über die Frage, ob die Vögel einen Kehlddeckel besitzen oder nicht, wurde der Unterschied zwischen häutiger und knorpeliger Epiglottis nicht gehörig erwogen. Wie bei den Reptilien, so gibt es auch bei den Vögeln einen Processus epiglotticus am Kehlkopf und bei diesen sogar eine getrennte Epiglottis, von welcher vor der Präparation kaum eine Spur zu sehen ist und ferner kommen häutige kehlddeckelähnliche Querfalten am Kehlkopfeingang vor, während die vordere Spitze des Kehlkopfs stumpf, selbst convex ausgeschnitten ist. Von dem häutigen Kehledeckel soll hernach die Rede sein.

Die obere Spitze der Cart. thyrioida ist bei Meleagris tief ausgeschnitten, bei den Papageien etwas eingebogen, bei Pelecanus quer abgestutzt, stumpfspitzi bei den Strassen und den meisten Singvögeln, spitz bei den Raubvögeln; bei Cypselus stellt der ganze obere Rand einen ziemlich flachen Bogen dar, aus welchem die Spitze nicht vorspringt. Den ersten Ansatz zu einem Processus epiglotticus fand ich bei Crypturus in Gestalt eines ganz kurzen zapfenförmigen Vorsprungs. Bei dem Storch und Reiher ist ein blattförmiger, breiter und gleich der Vorderfläche des Schildknorpels völlig ossifizierter Processus epiglotticus vorhanden, welcher der Form nach mit dem der Agamen viele Ähnlichkeit hat. (S. Taf. V. Fig. 34. D.)

Bei den meisten Hühnern, Enten, bei Larus, Alca, Haematopus, Muscicapa, näherst sich dieser Fortsatz noch mehr der Sängthierepiglottis durch seine Weichheit und Dünne. Er sitzt mit breiter Basis auf dem obener Rande der Cart. thyrioida oder ist vielmehr die obere Spitze dieses Knorpels selbst, dessen Verknöcherung aber nach oben plötzlich durch eine quere gerade oder convexae Linie abgegrenzt ist. So gehen auch die Seitenränder der Cart. thyrioida oft ohne Unterbrechung in die Seitenränder des Processus epiglotticus vorhanden.

* S. Abbildungen desselben bei v. Humboldt a. a. O. Pl. I. No. 1. Fig. 2. n. No. III. Fig. 2. Pl. II. No. V. Fig. 3. Ferner bei Geoffroy a. a. O. Pl. V. Fig. 60. (ohne Bezeichnung).

** a. a. O. p. 458.

*** In dessen Archiv. a. a. O. p. 323.
über (s. Taf. V. Fig. 32. D). Der freie Rand des letztern ist bald quer abgestutzt, bald convex, bald zugespiitzt.

Als ein eigenthümlicher Knorpel existirt die Cartilago epiglottica (ich unterscheide Cartilaga epi-

glottica.
durch diesen Namen die knorpelige Epiglottis von der Schleimhautfalte, welche sie bei den
Säugethiere ausfüllt) bei dem Schwann. Eine unregelmässige, gezackte, im Ganzen nach oben
convexe Naht, welche ungefähr durch die Mitte der C. thryoidea quer verläuft, theilt dieses
elle in eine obere und untere Hälfte, die obere entspricht der Epiglottis und stellt eine
dreiseitige Platte dar, deren Seitenränder ebenfalls die Seitenränder des Schildknorpels fort-
setzen. Nur etwa das obere Drittel der Epiglottis ist frei, der übrige Theil trägt zur Bild-
dung der Kehlkopfhöhle bei und die Giessbeckenknorpel legen sich an die Seiten derselben an.

Da durch und durch die vollständige Verknöcherung ist die Bezeichnung dieser Platte zur
Epiglottis der Säugethiere noch etwas undeutlich. Viel vollkommen wird die Ähnlichkeit
bei Sterna, Rallus, vielleicht auch Larus. Hier findet sich der kurze und breite, knor-
plige Processus epiglotticus der Hühnervögel und als Fortsetzung desselben, durch eine
Naht von ihm getrennt, ein langer, vollkommen zungenförmiger und weicher Knorpel, der so-
gar in dem Boden der Mundhöhle hinter der Zunge die Schleimhaut in einen schwachen,
warzenartigen Höcker erhebt. Dies ist die vollkommenste Form der Cart. epiglottica, die
ich bei Vögeln gesehen habe. Leider hatte ich nicht Gelegenheit, Scolopax Gallinula zu
untersuchen, von welcher Nitzsch berichtet, dass sie einen deutlichen, häutigen Kehldeckel
besitzt und dass dieser in der Mitte seines Randes einen rundlich konischen, härlichen, nach
hinten gerichteten Zipfel trage, in welchem ein wirklicher Knorpel sich befindet. Über den
letztern Punct ist er indes nicht ganz sicher. Ich finde, dem äussern Ansehen nach, dieselbe
Bildung bei der nah verwandten Crex, aber hier ist der Zipfel der häutigen Epiglottis nicht
knorpelig und steht mit dem Kehlkopf in keiner Verbindung. Dieser hat nur einen angewach-
senen dünnen Processus epiglotticus, gleich den Hühnern, der ohne Präparation nicht sicht-
bar ist.

In der Mitte der hintern Wand findet sich allgemein bei den Vögeln der Knorpel, Cart. crico-
den.
anch meistens verknöchert, wieder, welcher sich zuerst bei der weiblichen Pipa vom Schild-
ringknorpel abgrenzte und bei Emys und Chelonia die hintere Spitze des Kehlkopfes bildet und
und die Giessbeckenknorpel trägt. Ich habe ihn früher Ringknorpel genannt und die weitere Be-
schreibung desselben wird diesen Namen rechtfertigen. Die Gestalt dieses Knorpels bei den
Vögeln ist im Allgemeinen verschoben rhombisch, viereckig oder dreieckig, auch herzförmig,
die Spitze nach unten gewandt. (S. Taf. V. Fig. 32 und 33. E. Geoffroy a. a. O.
O. Pl. V. Fig. 61. 63. cr.) Die erste Form kommt bei den Strausen und Papageien vor.
Die beiden Enden der Cart. thyrioida lassen da, wo sie sich hinten mit einander verbin-
den, am obern Rande einen dreieckigen Ausschnitt. In diesen ist der viereckige Ringknorpel
wie ein Karten-Carreau gestellt und die Seiten desselben, welche frei bleiben, dienen den
Giessbeckenknorpeln zur Articulation. Bei dem Papagei und beim Casuar ist die ganze hin-
tere Fläche des Ringknorpels frei und sichtbar; beim zweizehigen Strauss muss nach Meckel's

* Geoffroy a. a. O. Pl. V. fig. 60. 62. 63. h.

** Meckel's Archiv. 1826. p. 616.
Beschreibung auch die Spitze des Ringknorpels frei zwischen den Giessbeckenknorpeln nach oben vorragen. Aber schon an dem Kehlkopf der Rhea wird die hintere Fläche fast ganz bedeckt durch Fortsätze der Giessbeckenknorpel, welche über dieselbe nach innen und unten herabsteigen und einander von beiden Seiten erreichen, so dass sie in der Mittellinie, hinter der C. cricoidea, artüchliend zusammentreten.

Bei den meisten Vögeln ist der Ringknorpel von aussen gar nicht zu sehen, da er überhaupt klein ist und zum grössten Theil noch durch die Cart. thyrioidea und die Cartt. arytaenoideae bedeckt wird. Häufig aber bildet er einen desto ansehnlicheren Vorsprung in die Höhle des Larynx und er geht seiner Bestimmung schon dadurch mehr entgegen, dass er zum grossen Theil nach innen oder vorn, vor die Enden der Cart. thyrioidea, zu liegen kommt.

Bei dem Huhn (Taf. V. Fig. 32.) hat der Ringknorpel eine 4eckige Form; mit dem obern, breiten, zugleich etwas wulstigen Rande ruht er auf dem obern Rande des Schildkröpels; er trägt an beiden Seiten des obern Randes Gelenkflächen für die Giessbeckenknorpel, während die Mitte frei bleibt. Dieser Knorpel ist, wie schon früher Beobachtern auffiel, dem höhern Mittelstück des menschlichen Ringknorpsels ähnlich. Es fehlt ihm, um demselben völlig zu gleichen, nichts als ein Bogenstück, welches sich etwa so zu ihm verhalten müsste, wie die Rippen oder die hintern Wirbelbogen zu einem Wirbelkörper. Geoffroy und Carus nahmen deshalb an, dass der Ringknorpel der Vögel mit dem ersten Trachealringe verbachte, um den Ringknorpel der Säugethiere darzustellen. Mir ist es wahrscheinlicher, dass es die Seitentheile des Schildknorpels sind, welche zu Bogenstücken des Ringknorpels werden.

verschiedenen Ansichten über die Deutung des Vogelkehlkopfs in Bezug auf den Kehlkopf
der Säugethiere gewissermaassen ihre Rechtfertigung.

Wenn die Bogenstücke (Taf. V. Fig. 33. C) ihre Gelenkverbindung mit dem Schildknorpe aufgeben, wenn sie hinter diesem weiter nach vorn treten und sich vorn in der Mit-tellinie verbinden, wenn der Körper des Ringknopfes mit diesen Bogenstücken ver-wächst, so ist der Kehlkopf des Menschen und der höheren Säugethiere vollendet. Es wird sich zeigen, in wiefern dieser Proces in der Natur nachgewiesen werden kann.

* v. Humboldt, a. a. 0. Pl. I. No. II. Fig. 3. — Geoffroy, Pl. V. Fig. 61. 63. ar. und gl. — Carus, a. a. 0. Taf. XIV. Fig. 5. — Meine Tafel V. Fig. 32. F.
** a. a. 0.
**** a. a. 0. p. 649.
Ich sah bei allen Vögeln 3 Paar Kehlkopfmuskeln, die nur in der Größe variieren.

Und zwar:

Von einer enormen Stärke sind diese Muskeln sämtlich bei den Raubvögeln, bei denen sie die ganze vordere Wand und einen Theil der Seitenwand der Trachea beinahe bis zur Theilungsstelle in die Bronchien bedecken. Sie sind kleiner bei den Hühnern und Gänser und bei den straussartigen erstrecken sich nicht weit über den Kehlkopf, so dass man den *M. thyriotracealis* kennen muss, um ihn wiederzufinden.

Sie sind Aufheber des Kehlkopfs und der Luftrohre.

nach vorn zusammendrücken oder gemeinschaftlich mit dem vorigen die Ränder des Kehlkopfseinganges nach aussen bewegen.

Der *M. hyotrachealis* (*M. tracheoglossus* HUBER, Fig. 2. gh, Fig. 4. m. Fig. 10.) kommt jederseits nach hinten und aussen von den beiden obgenannten aus der Zunge scheide hervor, geht auf die Rückseite der Trachea und theilt sich hier in mehrere Bündel, die sich mit den Bündeln des entsprechenden Muskels der andern Seite kreuzen.

Den *M. omohyoideus* der andern Vögel vertritt beim Specht ein schmaler Muskel, welcher vom Schulteralblatt entspringt und hinter den obgenannten durch an die Vorderfläche der *C. thyroidea* tritt, wo er sich über den Ursprung des *M. thyriotrachealis* ansetzt. (*M. omohyoideus* HUBER, Fig. II. II.) Ein anderer Theil des *M. omohyoideus* geht an das grosse Zungenbeinhorn.

HUBER's *Geniothyroides* (Fig. 2. kk) und *Mylothyroides* (Fig. 2. ii, fig. 5.a) sind Schlundmuskel, welche von den Unterkieferkanten entspringen, sich in dem Anfang des Pharynx ausbreiten und ein Paar Fasern an die *Cart. thyroidea* abgeben.

Bei allen Vögeln sind die Ränder des Kehlkopfseinganges allein durch die hintern Rän-
der der Cart. arytaenoideae gebildet, deren obere Spitzen sich dicht an die Cart. thy-
rioidea anlegen. Der Stimmladeneingang steht in der Ruhe gewöhnlich offen und bildet ein
lang gezogenes Oval. Kein Vogel hat Stimmbänder und daher auch keiner eine Stimmitreite.

Die Schleimhaut der Zungenwurzel oder vielmehr des Bodens der Mundhöhle hinter
der Zungenwurzel geht bei den Meisten ohne alle Unterbrechung in die Höhle des Kehlkopfs
über; bei Andern erhebt sie sich vor dem Eingang in diese in Gestalt einer stumpfen Papille
(Pterocetes, Otis), jedoch schien mir diese Erhabenheit nicht durch einen mit dem Kehlkopf
in Verbindung stehenden Theil, und überhaupt nicht durch einen Knorpel veranlasst zu sein,
sondern mehr durch eine Anhäufung von Fett oder Drüsensubstanz. Bei Sterna und Rallus
dagegen ist es allerdings die knorpelige Epiglottis, welche vor dem Kehlkopfeingang unter
der Schleimhaut als eine stumpfe Spitze sichtbar wird. Auch beim Strauss scheint die obere
Spitze des Schildknorpels die Schleimhaut in eine kehdeckellähnliche Falte zu erheben. *

Eine quere, halbmondförmige Falte, also eigentlich häutige Epiglottis findet sich an-
gedientet bei Emberiza, Crypturus, Larus, ** deutlich bei Pulica atra; ** bei Crex be-
fendet sich in dieser queren Hautfalte ein mittlerer Wulst oder ein Knötchen, welches aber
nicht knorpelig ist. Ob Nitzsch richtig gesehen hat, wenn er bei Scolopax gallinula
einen Knorpel in einer ähnlichen gestalteten Hautfalte vermutet, müssen fernere Untersuchun-
gen lehren.

Auch bei den Vögeln kommen Longitudinalhautfalten vor, welche sich zwischen die
Spitzen der Cart. arytaenoideae hindurch in die Kehlkopfhöhle begeben und an die innere
Wand der C. thyrioidea befestigen. Eine solche sah ich bei Rhea. Sehr auffallend ist
die Bildung dieser Hautfalte beim Schwan. Sie entspringt nämlich mit einer breiten queren
Basis von dem Boden der Mundhöhle unmittelbar vor dem Stimmladeneingang, wird sogleich
schmal und geht mit der Spitze an den knöchernen Vorsprung der innern Fläche der Cart.
thyrioidea.

Kehlkopf der Säugethiere.

Nach den ausführlichen Arbeiten von Wolf, *** Brandt † und Meckel ‡ ‡ über
die Stimmorgane der Säugethiere kann ich mich hinsichtlich derselben um so kürzer fassen,
da es fast nur Abweichungen der Proportion und der Gestalt der einzelnen Theile sind, durch
welche die Kehlköpfe der Säugethiere unter sich und von dem Stimmorgan des Menschen va-
riieren. Es wird daher dieser kurze Abschnitt nur gleichsam die Anwendung der früheren und
die Probe enthalten, wiedern die bisher gebrauchten Namen richtig gewählt worden sind.

Der Schildknorpel, den wir noch bei den Vögeln überall zwar hinten offen, aber voll-

** Geoffroy St. Hilaire, a. a. O. Taf. VI. Fig. 71. h.
*** Nitzsch, a. a. O. Taf. VII. Fig. 1—5. a.
**** Dissertatio anatomica, de organo vocis mammalium. Berol. 1812. 4.
† Observations anatomica de mammalium... vocis instrumento. Berol. 1816. 4.
kommen ringförmig sahen, bedeckt bei allen Säugethiere
nur die Vorder- und die Seitenflä-
chen des Stimmorgans; seine hintern Ränder stehen weit auseinander; ein Grund mehr, um
anzunehmen, dass ein Theil desselben an den Ringknorpel übergegangen sei. Mit diesem
artefakti er immer durch die untere Spitzeseines hintern Randes, welche fast bei allen Säu-
gethieren zu einem stüßeuigen Fortsatzes ausgezogen ist; eine Ausnahme machen der Luchs
und das Schnabelthier. Dem untern Fortsatz gegenüber besteht bei den meisten Säugethie-
ren ein oberes Horn zur Articulation mit dem Zungenbein; es fehlt aber dem Schwein und
den Cetaceen.

Die vordere Fläche des Schildknorpels ist bald glatt, gewölbt, bald mit einer Firste
versehen, so dass der Knorpel, wie auch bei einigen Reptilien, aus 2 Seitenhälften zusammen-
gesetzt scheint. Eine Theilung in einzelne Luftrubrenringe ist bei dem Schildknorpel der
Säugethiere nirgends mehr durchzugehen, dass aber eine solche in früherer Zeit vorhanden gewe-
sen sei, wird durch den Verlauf der Arteria laryngea inf. bewiesen. Die Oeffnung, durch
welche diese so häufig in den Kehlkopf tritt, kann nur der Rest einer früheren Spalte sein.

Es gibt nur eine Familie unter den Säugethieren, bei welcher die Epiglottis noch con-
tinuierlich mit dem Schildknorpel verbunden, also ein Fortsatz des letzteren ist, nämlich die
Cetaceen. Rapp sagt: * der Kehldeckel besteht aus einer sehr dicken, harten Knorpel-
masse und zeigt durchaus nicht jene ausgezeichnete Biegsamkeit und Elasticität, wie bei den
üblichen Säugethieren. Bei Delphinus delphis ist dieser Knorpel mit dem Schildknorpel in
ein Stück verwachsen, ohne dass man die Grenze beider angeben könnte. So finde ich es
auch bei Delphinus phocaena. Bei Latra vulgaris *** ist an dem Schildknorpel noch
ein kühldackelartiger Fortsatz continuierlich befestigt, aber schon ein besonderer Kehldeckel
abgelöst. Bei den meisten ist bekanntlich die Cartilago epiglottica ein von dem Schild-
knorpel vollkommen getrenntes Stück. ***

Ich vermuthe, dass der Ringknorpel der Säugethiere sich durch Verschmelzung des Cartilago cri-
coliden.

* Wolff, Taf. II. Fig. 10.
** Die Cetaceen, zoologisch-anatomisch dargestellt. p. 146.
*** Wolff, Taf. II. Fig. 13.
**** Eine ganz eigentümliche Bildung glaubt Meckel an dem Kehlkopf des Schnabelthiers gefunden zu haben
(Ornithorhynchia paradoxo descriptio anatomica. p. 46. Taf. VII. Fig. 17—19.). Es soll nämlich der Schild-
knorpel knöcherne Seitentheile besitzen, welche jederseits in 2 Bogen geheilt wären, von denen der obere um die
ganze Speiseröhre herumgehe und sich mit dem gleichnamigen hinter derselben vereinige. Es gehört aber dieser Bo-
gen, welcher in Meckel's Abbildungen mit 2 und 3 + bezeichnet ist, dem Zungenbein an; unter ihm kommt erst,
allerdings sehr genau durch Sehnen mit ihn verbunden, die Cartilago thyroidea zum Vorschein (3 in Fig. XVII
und XIX). Diese ist sehr schmal, nur ein plattes Bogenstück, ohne obere oder untere Hörner.
† Meckel, a. a. 0. p. 502. Rapp, a. a. 0.
†† Meckel, p. 238. — Wolff, Taf. III. Fig. 21.
††† Wolff, Taf. III. Fig. 16.

Wollte man mit Geoffroy und Carus statuiren, dass der Ringknorpel der Vögel sich mit einem Trachealringe verbindet, so ist nicht einzuschreiten, warum dieser an der Vorderwand geöffnet sein sollte, da die Trachealringe der Säugethiere, wenn sie unvollständig sind, fast immer an der hinten Wand durchbrochen sind. Indess findet allerdings auch Unterbrechung der Trachealringe an der vorderen Wand statt. Bei *Balaena rostrata* und *Mysticetus* sind nach Rapp die Knorpel der Luftöhre vorn nicht geschlossen und die ganze vordere Seite der Luftöhre ist bis zu ihrer Theilung membranös. Beim Delphin sah ich wenigstens die drei ersten Trachealringe vorn durchbrochen und beim Löwen folgten in einem Fall auf den ersten, vorn geschlossenen Trachealring vier offne, zwischen welchen ein einfacher, longitudinaler Knorpelstreif sich gebildet hatte; das Verhältniss der Trachealringe zu diesem Streifen war wie von Rippen zum Brustbein.

Die Giessbeckenknorpel sind von Anfang an in ihrer Form und Bestimmung am constantesten geblieben. Auch bei den Säugethiere sind sie in der Regel dreieckig, aber weniger in die Länge gezogen als bei den Vögeln. Ihre obere Spitze erhält einen hakenförmigen Fortsatz (Wiederkäuer, Pferd), welcher sich endlich ablöst und einen eigenthümlichen Knorpel darstellt, den Santorinischen, der unter den niedern Classen allein bei *Rana* vor-

a Wolff. Taf. II. Fig. 13.

**a. a. O. p. 149.

***a. a. O. p. 34. Fig. VI. g, IX. f.

**** Ebendas. Fig. V. k, VI. f, VIII. g.
kam, unter den Säugethieren aber nur wenigen fehlt. **Wolff** hat die Gattungen angegeben, bei welchen er vermisst wird; *zu diesen gehört auch noch **Orycteropus**.

Die Kehlkopfmuskeln der Säugethiere theilen sich in drei Gruppen, welche den drei **Muskeln** des Vogelkehlkopfs und somit auch denen der niedern Thiere genau entsprechen. **M. thyroideus.** **Cricothyroideus.** **Sternothyroideus.** Die beiden letzten sind Theile des **Thyriotrachealis** der Vögel. Als ein abgetrenntes Bündel des **Hyothyroideus** kann man auch den **Glosso-epiglotticus** der Säugethiere betrachten, da die Epiglottis die vordere Spitze des Schildknorpels repräsentirt.

Am complicirtesten ist der **Compressor** des Kehlkopfs bei den Säugethieren, aber sei- **M. compressor laryngis.** **Thyriothyroideus.** **Cricoarytaenoides posticus.** **Schildknorpels.** Arbeiten entspringt dieser Muskel vom Zungenbein und der Außenflächen des Schildringknorpels oder Schildknorpels, bei den Vögeln sahen wir seine Insertion auf den Rand des Schildknorpels hinaufgerückt und bei den Säugethieren hat er gleichsam diese Wand überstiegen und sich an der inneren Seite wieder herabgegeben. Da die Epiglottis bei den Säugethieren vollkommen getrennt ist, so hat sich mit ihr eine Portion des Compressor abgelöst, es ist der **Ary-epiglotticus**, der jetzt seinen festen Punct an den Giessbeckenknorpeln hat und den beweglichs Kehldeckel herabzieht, während er früher vom festen **Processus epiglotticus** aus mehr zur Bewegung der Giessbeckenknorpel bestimmt schien. Eine zweite Partie des Compressor ist mit den Seitenteilen des Schildknorpels an den Ringknorpel übergegangen, es ist der **M. cricoarytaenoides lateralis.** Ferner hat sich, nach dem früher entwickelten Gesetze, der Muskel dadurch, dass er an dem äussern Rand der Giessbeckenknorpel einen Anheftungspunct gefunden, wieder unvollkommen getheilt und derjenige Theil beider Muskeln, welcher hinten zwischen beiden Rändern der Giessbeckenknorpel liegt, ist **Arytaenoides transversus** und **obliquus.** Die Theilung ist unvollkommen, denn es endet der **Arytaenoides obliquus**, wie schon **Santorini** angiebt, nicht an der Spitze des Giessbeckenknorpels, sondern setzt sich zum Theil in den **M. arypepiglotticus**, zum Theil in den **M. thyroarytaenoides** fort. Endlich ist es auch nur ein Bündel des Compressor, welches, von

a. a. O. p. 42.

Dieser ist bei **Hylobates** wieder in drei besondere Muskeln zerfallen. S. **Erschlicht in MüLLER's Archiv.** 1834. p. 218. Taf. II.
Thyroarytaenoideus über die Epiglottis verlaufend, in dieser endet und mit dem Aryepiglotticus zum Depressor der Epiglottis zusammentritt.

Wie schon im Eingang dieser Abhandlung entwickelt wurde, so unterscheidet sich der Säugetierkehlkopf von den der früheren Classen wesentlich dadurch, dass sich die vorderen Ränder der Giessbeckenknorpel von den Seitenrändern des Schildknorpels entfernen und zwischen ihnen eine Schleimhautfalze sich ausspannt, welche den Eingang zum Kehlkopf begrenzt, das Ligamentum aryepiglotticum. In den vorderen Winkel beider zusammentretenden Falten legt sich die halbmondförmige Cartilago epiglottica und bedeckt den Eingang zum Kehlkopf vollständig. Die hinteren Ränder der Giessbeckenknorpel dagegen, zwischen welchen bisher die Höhle der Respirationsorgane sich öffnete, werden fast in ihrer ganzen Länge durch Muskeln verbunden und die Schleimhaut geht continuirlich innen und aussen über sie weg.

In den Ligamenta aryepiglottica bildet sich bei vielen Säugetieren ein eigenthümlicher Knorpel, die Cartilago cuneiformis. Wo sie vorkommt und wie sie gestaltet sei, findet sich ausführlich angegeben bei Brandt. Sie fehlt natürlich den niederern Classen, da die Falte, in welcher sie sich bildet, erst bei den Säugetieren erscheint. Indess darf man sie der Bedeutung nach mit dem herzförmigen Stimmbandknorpel einiger Frösche zusammenstellen.

Besondere Anomalien in der Form der Kehlkopfstücke zeigen einige Affen, namentlich die Brüllaffen und die Cetaceen. Diese sind von den öfters genannten Autoren so genau beschrieben und auch in den Lehrbüchern so ausführlich abgehandelt, dass ich nicht weiter dabei verweile.

Resultat.

Ich hatte mir die Aufgabe gestellt, die Entwicklung des knorpeligen Kehlkopfgerüstes durch die Reihe der Wirbeltiere in der Weise zu verfolgen, dass die Formen, die auf verschiedenen Stufen nebeneinand erstehen, als successiv fortschreitende Bildungen desselben Organs sich darstellten, mit andern Worten, dass die räumliche Entwicklungsgeschichte statt einer zeitlichen gelten könne. In dieser Art lässt sich das Resultat der mitgetheilten Untersuchungen in Kürze folgendermaassen zusammenfassen:

In dem häutigen unpaaren Ausführungsgang der Lungen (Lepidosiren) entwickelt sich jederseits ein longitudinaler Knorpelstreif (Proteus).

Dieser zerfällt in einen oberen, die Stimmitte begrenzenden Theil, die Cartilago arytaenoidae und in einen absteigenden Theil.

Von der Spitze der Cartilago arytaenoidae löst sich ein Knorpelchen ab, die C. Santorini (Frosch, Säugethiere).

Der absteigende Theil schickt Queräste aus, welche sich vorn oder hinten oder an beiden Flächen verbinden und dadurch zu mehr oder minder vollständigen Ringen werden.

Die untern Queräste sondern sich durch Resorption des ursprünglichen, absteigenden Theils zu einzelnen Ringen, dadurch Zerfallen des unpaaren Respirationscanals in Larynx und Trachea.

Die Laryngealknorpelringe verschmelzen, indem die Interstitien vorn und hinten ausgefüllt werden, zu einem breiten Ringe, dem Schildringknorpel.

Die vordere Spitze des Schildringknorpels erhebt sich und breitet sich aus zu einem blattförmiigen Fortsatz, dem Processus epiglotticus, und wird endlich selbstständig als Epiglottis.

Durch eine Naht wird aus dem hintern oberen Theil des Schildringknorpels ein plattes Stück, die hintere Spitze, abgegrenzt (Pipa ♀, Chelonia) und zum Körper eines eigenen Knorpels, welcher die Giessbeckenknorpel trägt. Der Schildringknorpel ist in Schildknorpel und Ringknorpel zerfallen.

Der Schildknorpel theilt sich in der Mitte der hintern Fläche durch eine longitudinale Naht; die Seitenstücke, welche diese Naht begrenzen, lösen sich vom Schildknorpel ab und treten an den Ringknorpel, als Bogenstücke desselben (Singvögel).

Der Körper des Ringknorpels verschmilzt mit den Bogenstücken, wächst unter dem Schildknorpel nach vorn herum, er bleibt noch vorn geöffnet bei den Cetaceen und einigen Raubthieren und schliesst sich zuletzt vollständig zur Cart. cricoidea der meisten Säugerthiere und des Menschen.
Erklärung der Abbildungen.

Erste Tafel. Nackte Reptilien.

Folgende Zeichen haben auf dieser und der folgenden Tafel in allen Figuren dieselbe Bedeutung.

A Zungenbein.
 a Körper desselben.
 b erstes Horn.
 c zweites drittes e Columella.

 e knorplige Epiphyse der Columella.
B Eingang der Stimmlade.
C Bronchus.
 C' linker Bronchus.
 C'' rechter Bronchus.
D Lunge.
E Unterkiefer.
F Zunge.
G Brustbein.
H Leber.
I Herzbeutel.
K Stimmlade.
F Giessbeckenknorpel.
 f' vordere Spitze desselben.
 f'' hintere Spitze desselben.
 f''' obere Spitze desselben.

Santorinischer Knorpel.

K Cartilago laryngo-trachealis.
 x Oberer Querast desselben.
 x' Ringförmiger Knorpel.
 x' vorderer Fortsatz desselben.
 x'' hinterer Fortsatz zum Zungenbein.
 x''' hinterere Spitze desselben.
 x Bronchialfortsatz.
μ Verbindungssast zwischen den Bronchialfortsätzen.

ν Bronchialringe.

k vordere || hintege Wand.

l hintere ||

m Musculus dilatator aditus laryngis.

n " constrictor aditus laryngis.

p " compressor laryngis.

r Rand des Stimmladengangs.

s unteres } Stimmband.

t unteres }

σ Knorpel des Stimmbandes.

Fig. 1. Zungenbein und Stimmlade einer 13" langen Coecilia tentaculata in natürlicher Größe.

e' Fünftes Zungenbeinhorn.

Fig. 2. Stimmlade derselben, vergrössert. Vorn in der Mitte aufgeschnitten und ausgebreitet. An der Stelle der punctirten Linien ist ein Stück von etwa 1" Länge ausgefallen.

Fig. 3. Stimmlade des Proteus anguinus, von hinten geöffnet. Etwa um das Doppelte vergrössert. ξ Pars arytaenoidea, ϕ Pars laryngo-trachealis des einfachen Stimmladenknorpels.

Fig. 4. Respirationsorgane von Siredon pisiformis, zum Theil noch von der Schleimbahnt des Bodens der Mundhöhle überzogen. Natürliche Größe von einem 6" langen Exemplar.

Fig. 5. Die Stimmlade derselben, nachdem die Schleimbahn abpräparirt worden, um die Muskeln zu zeigen, welchen der obere oder vordere Rand der C. arytaenoidea bildet. Unter derselben ist durch die Concavität des Giessbeckenknorpels eine seichte Vertiefung.

Fig. 6. Knorpel der Stimmlade derselben.

Fig. 7. Die Stimmlade derselben, von hinten geöffnet, um den stimmbandartigen Vorsprung (1) zu zeigen, welchen der obere oder vordere Rand der C. arytaenoidea bildet. Unter derselben ist durch die Concavität des Giessbeckenknorpels eine seichte Vertiefung.

Fig. 8. Zungenbein und Respirationsorgane von Amphiuma bidactylum, von vorn. 1. Mus. rectus abdominis, welcher an den obern Rand der Stimmlade geht und sich zum Theil mit den Erweiterern derselben vermisch. m' Dilatator aditus laryngis von Kiemenbogen. m'' die zweite Portion derselben von der Wirbel säule.

Die Rückseite der Stimmlade K hat zu beiden Seiten ähnliche, aber etwas schmälere Knorpelstreifen. Die C. laryngo-trachealis ist also rinnenförmig, doch ist der Winkel, unter den die vordere und hintere Leiste zusammenstösst, nicht scharf.

Fig. 9. Seitenansicht der Stimmlade derselben Thiers. Natürliche Größe von einem 12" langen Exemplar.

Fig. 10. Stimmladenknorpel von Abranchus alleghanensis ξ, von vorn.

Fig. 12. Kehlkopfmuskeln von Abranchus alleghanensis. Vergl. die Beschreibung p. 22.

Fig. 13. Stimmladenknorpel Einer Seite von Triton marmoratus ξ. Etwa zehn mal vergrössert.

Fig. 14. Dieselben von Triton igneus ξ, ebenso.

Fig. 15. Giessbeckenknorpel von Triton cristatus ξ, stark vergrössert. Die Laryngotracheal-

Fig. 16. Stimmladenknorpel von Salamandra atra, fünfmal vergrössert. Die Stimmlade ist von hinten geöffnet dargestellt. Die mit ' bezeichneten Knorpelstreifen liegen schon in der Wand der Lunge.

Fig. 17. Stimmladenknorpel derselben, im Zusammenhang mit den Stimmladenmuskeln.
Fig. 18. Stimmladenknorpel von Salamandra atra, fünfmal vergrössert. Die Stimmlade ist von hinten geöffnet dargestellt. Die mit ' bezeichneten Knorpelstreifen liegen schon in der Wand der Lunge.

Fig. 19. Zungenbein, Stimmlade und deren Muskeln eines 5" langen Bufo palmarum. Ansicht von vorn.
+ Membran, welche zwischen beiden grossen Zungenbeinhörnern ausgespannt ist.
x Knorpelstreifen, welche am unteren Rande der Stimmlade beide Bronchialfortsätze verbinden.

Fig. 20. Stimmladenmuskeln derselben, von hinten gesehen.
x Knorpelstreifen, welche von der hintern untern Spitze des ringförmigen Knorpels in die Lungen herablaufen.

Fig. 21. Stimmladenknorpel derselben, von vorn.
Fig. 22. Dieselben, Profil. Vorn und an den Seiten greift der ringförmige Knorpel über den Giessbeckenknorpel; die hintere Spitze des letztern überragt aber den ersten.

Fig. 23. Ansicht der Stimmladenhöhlen mit den Stimmköpfen.
Fig. 24. Zungenbein und Stimmlade mit dem Anfange der Lungen von Bufo cincereus.
Fig. 25. Knorpel der Stimmlade derselben, von vorn.
Fig. 26. Dieselben von hinten. Man sieht, dass die hintern Enden der Giessbeckenknorpel (f²) nicht, wie gewöhnlich, zusammengreten.

Fig. 27. Seitenansicht des Giessbeckenknorpels von Bufo cincereus. Bufo variabilis ebenso, doch ist der ringförmige Knorpel hinten etwas breiter.

Bufo calumita verhält sich, wie Bufo cincereus, nur sind die Bronchialknorpel etwas einfacher.

Bufo variabilis ebenso, doch ist der ringförmige Knorpel hinten etwas breiter.

Fig. 28. Stimmladenknorpel des Pelobates fuscus (f) von vorn.
Fig. 29. Dieselben von hinten. Der ringförmige Knorpel hinten offen.
Fig. 30. Giessbeckenknorpel derselben.
Fig. 31. Respirationsorgan mit präparirten Stimmladenknorpeln von Eugystoma gibbosum, vor-
dere Ansicht.

Fig. 32. Die Stimmladenknorpel isolirt, von hinten.
Fig. 33. Giessbeckenknorpel derselben, isolirt, von innen.
Fig. 34. Zungenbein (die obern Hörner nicht vollständig) und Respirationsorgan mit präparirten
Knorpeln von einem 1¼" langen Bombinator igneus, nicht ganz um das Doppelte vergrössert.
Von vorn.

Fig. 35. Stimmladenknorpel derselben von hinten.
Fig. 36. Dieselben, Profil.
Fig. 37. Ringförmiger Knorpel des Microps Bonapartii, von hinten gesehen.
Fig. 38. Giessbeckenknorpel mit dem unteren Stimmladen und den Knorpelchen derselben, σ.
Fig. 39. Stimmladenknorpel von Discoglossus pictus. Die Stimmlade ist von hinten geöffnet
und ausgespannt.

Fig. 40. Respirationsorgane der Rana esculenta. Lebensgross.
Fig. 41. Stimmlade derselben, von der Seite.
Fig. 42. Zungenbein und Stimmlade derselben, von hinten, mit präparirten Muskeln. S. p. 24.

p' Compressor vom Zungenbein.

p'' vom seitlichen Fortsatz des ringförmigen Knorpels x Fig. 41.

Fig. 43. Der ringförmige Knorpel derselben, isolirt und vergrössert, von vorn.
Fig. 44. Giessbeckenknorpel derselben; die Knorpelhaut ist abgetrennt, um die Cart. Santorini
g zu zeigen.
Fig. 45. Formen des Santorinischen Knorpels derselben
Fig. 46. Ringförmiger Knorpel der Rana temporaria, vergrößert, von vorn. Es fehlt hier
der untere Bogen, welcher bei R. esculenta die beiden Bronchialfortsätze z verbindet.
Fig. 47. Derselbe Knorpel von hinten.
Fig. 48. Derselbe, Profil.
Die Cartilago Santoriniana der R. temporaria ist einfach herzförmig, ohne den oberen,
platten Fortsatz der R. esculenta.
Fig. 49. Stimmladenknorpel der Rana principalis affinis, von hinten.
Fig. 50. Dieselben von vorn.
Fig. 51. Zungenbein der Hyla venulosa.
Fig. 52. Stimmladenknorpel der Hyla punctata von vorn.
Fig. 53. Dieselben, Profil.
Von der Mitte der hinteren Spitze des ringförmigen Knorpels x+ geht ein Faserbündel zur
Mitte der vorderen Wand, welches den Eingang in die Bronchien in 2 Hälften teilt.
Fig. 54. Giessbeckenknorpel derselben, von innen, mit dem longitudinalen Vorsprung, welcher der
Furche der äußern Fläche entspricht.
Fig. 55. Derselbe, vergrößert, mit dem Stimmband und dem Knorpel derselben, o.
Fig. 56. Stimmladenknorpel von Ceratophrys granosus, von vorn geöffnet und ausgebreitet.

Zweite Tafel.

N a c k t e R e p t i l i e n (A g t o s s a).

Für sämtliche Figuren gelten, ausser den oben angeschriebenen Zeichen, folgende:

a' Der dem Zungenbein verbliebene Theil des Zungenbeinkörpers.
a" Der zur Stimmlade gezogene Theil derselben.
a Verknöcherung im letztern.
o Cartilago cricoidea.
† Lücke des Zungenbeins, durch welche Muskeln treten.

Fig. 1. Zungenbein und Stimmlade des weiblichen Xenopus Boiei, von vorn. S. die ausführ-
liche Beschreibung des ersteren p. 15., der letztern p. 16 ff.
Fig. 2. Stimmladenknorpel derselben im Zusammenhang, von hinten.
Fig. 3. Rechter Giessbeckenknorpel derselben, von hinten und innen gesehen.
x Articulationsfläche mit der entsprechenden von gleichen Knorpels.
Fig. 4. Derselbe Knorpel von hinten und aussen.
m Sehne des Musculus dilatator, m Fig. 5.
 ψ o Ausschnitt, welcher auf den scheinklappenförmigen Fortsatz (x² Fig. 2.) passt.
Fig. 5. Muskeln derselben Stimmlade. Vergl. p. 27.
Fig. 6. Stimmladenknorpel und Knochen des männlichen Xenopus, von vorn. Vergl. p. 17.
Fig. 7. Ansicht der Knochenplatten derselben Stimmlade, von hinten oder innen.
Fig. 8. Profilansicht derselben.
Fig. 9. Linker Giessbeckenknorchen, von hinten und innen.
x Articulationsfläche mit der gleichnamigen des rechten Giessbeckenknorchen.
Fig. 10. Schematische Darstellung zu p. 17.
Fig. 11. Zungenbein und Stimmlade der weiblichen Pipa verrucosa, von vorn. Vergl. p. 16. 19.
Fig. 12. Knorpel der Stimmlade derselben, von hinten.
Fig. 13. Die Stimmlade derselben, hinten geöffnet und ausgebreitet; auf der rechten Seite sind
die Knorpel präparirt, auf der linken noch mit Schleimhaut überzogen, um die den Stimmbändern ent-
Fig. 14. Muskeln der Stimmlade der weiblichen Pipa, von vorn.
Fig. 15. Dieselben von hinten. Vergl. p. 26.
Fig. 16. Stimulauskörpel und Knochen der männlichen Pipa, von vorn.
Fig. 17. Dieselben von hinten.
Fig. 18. Von oben. Vergl. p. 20.
Fig. 19. Rechter Giessbeckenknochen desselben Thiers von innen.
Fig. 20. Derselbe von aussen gesehen, p. 21.
Fig. 21. Isolierte Bronchialringe der weiblichen Pipa, vergrößert.
Fig. 22 und 23. Ansicht der Muskeln der weiblichen Pipa, welche von Theilen des Stammes zum Zungenbein und zur Stimmlade treten. Vergl. p. 25.

1. M. transversus maxillae inferioris.
2. M. genioglossus, welcher in den Boden der Mundhöhle ausstrahlt.
5. M. sternohyoideus, vom Brustbein entspringend, spatet sich in zwei Bündel, von welchen das eine (5) an das grosse Seitenhorn, das andere (5') an das vordere Horn des Zungenbeins geht.
7. Eine andere Portion desselben Bauchmuskels, in zwei Insertionen gespalten, 7 an den unteren Rand des grossen Zungenbeinhorns, 7' an die Columella des Zungenbeins.

F ist das im Boden der Mundhöhle verborgene Zungenrudiment der Pipa.

Fig. 24. Zungenbein von Alytes obstetricans. p. 18. Nota. a Verknöcherung desselben.
Fig. 25. Schematische Figuren zu pag. 3.

Dritte Tafel.

Schlangen.

Für diese und die folgenden Tafeln gelten allgemein folgende Bezeichnungen:

A Zungenbein.
B Kehlkopf.
C Trachea.
D Zunge.
E Scheide derselben bei den Ophiidien.
F Stimulausen.
G Kehldeckel.
a Processus arytaenoides.
b Cartilago arytaenoida.
c Cartilago cricothyroidea.
e Processus epiglotticus.
ś Hintere Spitze der C. cricothyroidea.
d Cartilago cricoidea.
I. II. u. s. f. Erster, zweiter Trachealing.
f Aufheber des Kehlkopfes.
g Herabzieher desselben.
h Erweiterer des Stimulauskings.
i Compressor des Kehlkopfes.
j Raud des Stimulauskings.
m Ligamentum vocale inferius.

n Ligamentum hyothyroideum.

o Membran, welche die Lücke in der vorderen Kehlkopfwand ausfüllt.

p Membran in der hinteren Kehlkopfwand.

Fig. 1. Zunge und Kehlkopf mit dem Kehldeckel eines 4 Fuss langen *Crotalus durissus*, lebensgross.

Fig. 2. Kehlkopf desselben von vorn, mit den Insertionen der langen Kehlkopfmuskeln. Bei *Crotalus horridus* ist die vordere Spitze kürzer. So auch bei *Lachesis Yararaka*, zugleich die Giessbeckenknorpel schmaler und die hintere Wand nach unten offen, wie bei *Python* Fig. 44.

Fig. 3. Derselbe von hinten. Vergl. p. 47.

Fig. 4. Spitze des Kehlkopfs mit dem Giessbeckenknorpel von *Vipera Berus*.

Fig. 5. Muskeln desselben, von vorn.

Fig. 6. Dieselben von hinten.

Fig. 7. Kehlkopfknotel von *Naja tripudians*, hinten aufgeschnitten und ausgebreitet.

Fig. 8. Spitze des Kehlkopfs und Giessbeckenfortsatz von *Naja haje*.

Fig. 9. Kehlkopfknotel von *Elaps lemniscatus*, hinten durchgeschnitten.

Fig. 10. Dieselben von *Elaps lacteaus*.

Diesem ähnlich, nur spitzer ist der Kehlkopf von *Bungarus fasciatus*.

Fig. 11. Kehlkopfknotel von *Hydrophis trigonoccephalus*, hinten aufgeschnitten.

a Fortsatz des Giessbeckenfortsatzes, welcher dicht an den Schildringknorpel stößt, ohne sich mit ihm zu verbinden.

Fig. 12. Kehlkopfknotel eines 6 Fuss langen *Dryophis prasinus*, von vorn. Lebensgross.

Fig. 13. Derselbe von der Seite.

Fig. 14. Derselbe von hinten.

Fig. 15. Kehlkopfknotel von *Psammophis monilifer*, an der Seite aufgeschnitten und ausgebreitet.

Fig. 16. Kehlkopfknotel von *Coelopeltis lacertina*, um die eigenthümliche Gestalt der hinteren Spitze δ zu zeigen.

Fig. 17. Kehlkopfknotel von *Dipsas annulatus*, hinten geöffnet.

Fig. 18. Derselbe von *Dipsas bucephalus δ*, von vorn.

Fig. 19. Derselbe, Profil.

Fig. 20. Derselbe von hinten. Die hintere Spitze ungeschlossen.

Ebenso verhält sich *Dipsas nebulatus*, nur ist die vordere Spitze höher.

Fig. 21. Kehlkopf von *Homalopsis acér*, vorn geöffnet und ausgebreitet.

Fig. 22. Kehlkopf von *Tropidonotus matrix*, an der Seite geöffnet.

Fig. 23. Derselbe von *Tropidonotus melanostostus*, ebensow..

Fig. 24. Kehlkopfknotel von *Coronella laevis*, hinten geöffnet und ausgebreitet.

Fig. 25. Die Verbindungsstelle des Giessbeckenfortsatzes mit dem Ringschildknorpel aus demselben, vergrößert, um die Unterbrechung der spongösen Substanz an der Stelle zu zeigen, wo später die Trennung erfolgt.

Fig. 26. Muskeln der *Coronella laevis*, von vorn.

Fig. 27. Zunge, Kehlkopf und Kehldeckel von *Coluber flavescens*.

Fig. 28. Kehlkopfknotel desselben, an den Seiten geöffnet.

Fig. 29. Kehlkopf, Zunge und beiförmige Epiglottis von *Coluber pholidostictus*. In naturlicher Grösse, nach einem 31/2 Fuss langen Thier.

Fig. 30. Kehlkopfknotel desselben von vorn.

Fig. 31. Dieselben, Profil.

Fig. 32. Kehlkopfmuskeln desselben.

Fig. 33. Kehlkopfknotel von *Coluber rufiventris*, von vorn.

Fig. 34. Dieselben von hinten. Mit δ ist die hintere Spitze bezeichnet, welche mir durch eine Naht von dem übrigen Theil des Schildringknorpels getrennt schien.

Fig. 35. Kehlkopf von *Coluber pullatus*, vordere Ansicht.
Fig. 36. Derselbe, hintere Ansicht.

Fig. 37. Kehlkopfnorpel von Dendrophis ahaetulla, hinten aufgeschnitten, lebensgross, aus einem 3½ Fuss langen Exemplar.

Fig. 38 und 39. Kehlkopfmuskeln von Liophis cobella. Der Dilatator besteht aus 2 Portionen.

Fig. 40. Kehlkopf von Herpetodryas carinata. Profil.

Fig. 41. Zunge und Kehlkopf mit den langen Muskeln desselben von Python bivittatus.

H Zurückzieher der Zunge.

I Vorwärtszieher des Zungenbeins. Vergl. d'Alton am oben angeführten Orte. Taf. VII.

Fig. 5. M.

Fig. 42. Kehlkopfnorpel mit dem eigenthümlichen Dilatator von demselben, vordere Ansicht.

Fig. 43. Stimmritze und Dilatator glottidis von demselben, hintere Ansicht.

Fig. 44. Die Kehlkopfnorpel desselben präparirt, ebenso.

Fig. 45. Kehlkopf der Boa constrictor, von hinten. Natürliche Größe.

Fig. 46. Die präparirten Knorpel desselben, von vorn.

Fig. 47. Dieselben von hinten.

Der Larynx von Eryx turcicus gleicht ungefähr dem von Tropidonotus matrice, Fig. 22., doch ist der Processus epiglotticus niedriger und die Giessbeckenknorpel sind nicht getrennt.

Fig. 48. Larynx einer 9" langen Cylindrophis maculata, hinten aufgeschnitten.

A lebensgross.

B vergrössert.

Ebenso verhält sich Ilyis scytale, doch findet sich eine unscheinbare Andeutung einer Trennung von Giessbecken- und Schildringknorpel.

Fig. 49. Kehlkopfnorpel von Typhlops amphizanthus, an der Seite geöffnet und ausgebreitet.

B Natürliche Größe desselben.

V i e r t e T a f e l.

S a u r i e r.

Fig. 1. Zungenbein und Kehlkopfmuskeln von Amphisbaena fuliginosa, von hinten betrachtet.

Die Form der Kehlkopfnorpel ist ganz gleich der von Coronella laevis, Taf. III. Fig. 24.

Fig. 2. Kehlkopfnorpel von Anguis fragilis, hinten geöffnet und ausgebreitet. A in Lebensgrösse.

Ganz ähnlich ist die Form des Kehlkopfs von Cephalopeltis, nur dass sich hier, statt der zwei Querspalten, eine einzige dreieckige Öffnung in der vorderen Wand befindet.

Fig. 3. Kehlkopf und Luftrohre von Anguis fragilis in Verbindung mit dem Zungenbein, von vorn.

Fig. 4. Kehlkopfnorpel von Cyclodys flavigularis, von vorn.

Fig. 5. Derselbe von hinten.

Fig. 6. Giessbeckenknorpel desselben, vergrössert.

Bei Zygnis chalcidica ist die vordere Kehlkopfwand ebenso, aber die hintere gleichfalls durch drei Querfurchen in vier Ringe geteilt.

Fig. 7. Kehlkopf von Euprepes Telfairii, Profil. A natürliche Größe.

Fig. 8. Kehlkopfnorpel von einem 8" langen Ophisaurus ventralis, hinten geöffnet und ausgebreitet. Um die Hälfe vergrössert.

Fig. 9. Kehlkopf eines 2½ Fuss langen Pseudopus serpentinus, lebensgross, von vorn.

Fig. 10. Derselbe von hinten.

Fig. 11. Zunge, Kehldeckel, Stimmritze und Trachea des Zonurus cordylus. Die Coutaren des Zungenbeins sind durch punctirte Linien ausgegeben.
Fig. 12. Kehlkopfknorpel desselben, von vorn, natürliche Grösse aus einem \(\varepsilon \), 3" 2" lang bis zum After.
Fig. 13. Dieselben von hinten.
Fig. 14. Kehlkopf von *Hemidactylus armatus*, von vorn.
Fig. 15. Derselbe von hinten.
Fig. 16. Derselbe, Profil (die linke Fläche).
 \(b' \) Seitlicher Fortsatz des Ringschildknorpels, von welchem der *M. dilatator* entspringt.
 \(l \) Rand des Eingangs zum Kehlkopf.
Fig. 17. Kehlkopf von *Platydactylus fascicularis*. Lebensgross, von vorn.
Fig. 18. Derselbe von hinten. Die rechte *Cart. arytaenoidea* ist weggeneommen.
Fig. 19. Zungenbein und Kehlkopfmuskeln desselben, von vorn.
Fig. 20. Dasselbe Präparat von hinten. Der Dilatator \((b) \) auf einer Seite von der Insertion abgelöst und zurückgebogen.
Fig. 21. Zunge und Kehlkopfeingang von *Phrynosoma orbiculare*. Natürliche Grösse aus einem 2½" langen \(\varepsilon \). Vergl. p. 50.
Fig. 22. Kehlkopfknorpel desselben, von vorn.
Fig. 23. Dieselben von hinten.
Fig. 24. Kehlkopfknorpel von *Sceloporus torquatus*, von vorn. Lebensgross von einem 3¼" langen Exemplar. \(\varepsilon \).
Fig. 25. Ringschildknorpel desselben, von hinten.
Fig. 26. Giessbeckenknorpel desselben, vergrössert.
Fig. 27. Kehlkopfknorpel von *Tropidurus microlophus* \(\varepsilon \), 4½" lang, in natürlicher Grösse.
Die vordere Wand des Ringschildknorpels durch eine Längsfäche ausgezeichnet.
Fig. 28. Ringschildknorpel desselben, isolirt, von hinten.
Fig. 29. Ringschildknorpel von *Tropidurus torquatus* \(\varepsilon \), hinten aufgeschnitten und ausgubreitet.
Fig. 30. Kehlkopfknorpel von *Phrynocephalus auritus*, von vorn. A natürliche Grösse.
Fig. 31. Dieselben von hinten.
Fig. 32. Giessbeckenknorpel desselben, isolirt, von der innern Fläche angesehen.
Fig. 33. Derselbe Kehlkopf mit den Muskeln, vergrössert, von hinten.
Fig. 34. Dasselbe Präparat von hinten.
Fig. 35. Schildringknorpel des *Trapanus deserti* \(\varepsilon \), 3½" lang, von vorn.
Fig. 36. Schildringknorpel und Giessbeckenknorpel desselben, von hinten.
Fig. 37. Zunge und Kehlkopfeingang von *Polychrus marmoratus* \(\varepsilon \), 4" lang, lebensgross. Die Zunge verlängert sich nach hinten in zwei Lappen, welche sich dicht aneinanderlegen und den Eingang zum Kehlkopf umfassen. S. p. 50.
Fig. 38. Kehlkopfknorpel desselben, von vorn. Mit einer Längsfäche und eingebogenem untern Rand des Schildringknorpels, wodurch dieser dem menschlichen Schildknorpel ähnlich ist.
Fig. 39. Dieselben von hinten.
Fig. 40. Schildringknorpel von *Anolis velifer*, 2½" lang, von vorn. Um die Hälfte vergrössert.
Fig. 41. Derselbe von hinten.
Fig. 42. Schildringknorpel der *Cyclura denticulata*, mit ausgezeichnet grossem *Processus epiglotticus*, von vorn. Lebensgross.
Fig. 43. Derselbe von hinten.
Fig. 44. Linker Giessbeckenknorpel desselben, von aussen.
Fig. 45. Kehlkopfknorpel von *Iguana tuberculata*, von vorn.
Fig. 46. Dieselben von hinten.
Fig. 47. Dieselben von vorn, mit den Muskeln und dem *Lig. hyothyriodeum*.
Fig. 48. Zunge, Zungenbein und Kehlkopf mit den Muskeln desselben im Zusammenhang, von der Seite.
Fig. 49. Kehlkopf desselben mit präparirten Muskeln, von hinten.
Fig. 50. Kehlkopf von *Opithrya superciliosa*, von vorn. Der rechte Giessbeckenknorpel ist entfernt.
Fig. 51. Dasselbe Präparat von hinten.

Fig. 52. Schildringknorpel eines Calotes cristatus, von vorn.

Ein anderes Exemplar derselben Species war fast ebenso gestaltet, wie Calotes gutturosus.

Fig. 53. Kehlkopfknorpel von Calotes gutturosus, von vorn.

Fig. 54. Dieselben von hinten.

Fig. 55. Kehlkopf, noch mit der Schleimhaut überzogen, von Chamaeleo africanus.

Fig. 56. Präparirte Knorpel mit dem Kehlsack K, von vorn. Vergl. p. 39.

Fig. 57. Dieselben von hinten.

Fig. 58. Der Kehlsack an derselben Präparat ist geöffnet, die rechte Hälfte bis auf einen kleinen zurückgeschlagenen Rest am oberen Rande weggenommen, um das unvollkommene Septum des Kehlsacks zu zeigen (K'' K').

Fig. 59. Die vordere Fläche der innern Wand des Schildringknorpels. b" longitudinaler Vorsprung derselben nach innen. b"" schnabelähnlicher Fortsatz.

Fig. 60. Kehlkopfknorpel von Lacerta viridis, von vorn. A natürliche Grösse von einem 3, 12" lang.

Fig. 61. Dieselben von hinten.

Fig. 62. Dieselben von der linken Seite.

Fig. 63. Giessbeckenknoerpel desselben Thiers, isolirt.

Fig. 64. Kehlkopfhöhle desselben, hinten geöffnet und ausgebreitet, um die unvollkommenen Stimm- bänder (m) an der Basis der Cart. arytaenoidea zu zeigen.

Fig. 65. Kehlkopfmuskeln desselben, von vorn.

Fig. 66. Dieselben von hinten.

Fig. 67. Dieselben von der linken Seite.

Fig. 68. Kehlkopfknorpel von Ameiva vulgaris, von vorn.

Fig. 69. Dieselben von hinten.

Fig. 70. Kehlkopfknorpel von Podinema Teguixin, von vorn. Natürliche Grösse. Der Kopf mass von der Schnauze zum Trommelfell 2½''.

Fig. 71. Dieselben von hinten.

Fig. 72. Rechte Hälfte der Kehlkopfhöhle von Hydrosaurus bivittatus, lebensgross. Das untersuchte Exemplar verdanke ich der Güte des Herrn Prof. Grant.

Fünfte Tafel.

Fig. 1—14. Krokodile. — Fig. 15—31. Chelonier. — Fig. 32—34. Vögel.

Fig. 1. Kehlkopfknorpel von Alligator lucius. Von vorn. Der Schildringknorpel besteht aus 2, vorn in der Mittellinie durch eine Brücke verbundenen Ringen. Der obere, stärkere ist hinten geschlossen und an den Seiten sowohl nach oben, als nach unten breiter, als vorn und hinter; der untere, schmalere Ring ist hinten offen. Natürliche Grösse von einem Exemplar, welches bis zur Schwanzspitze fast 3 Fuss mass.

Fig. 2. Dieselben von der rechten Seite.

Fig. 3. Mittelstück des Schildringknorpels mit den hintern Enden der Giessbeckenknoerpels, von demselben, von hinten.

Fig. 4. Zungenbein und Kehlkopf mit den Muskeln derselben Thiers, von hinten. Die Schleimhaut ist auf der linken Seite erhalten; man sieht das longitudinale Frenulum G', welches die vordere Spitze des Kehlkopfeingangs an das Zungenbein heftet.

l'" Derjenige Theil desselben Randes, welcher durch den Giessbeckenknoerpel gestützt wird.

k' M. compressor laryngis vom Zungenbein und der vorderm linea alba.

HENSLE, Beschreibung des Kehlkopfs.
Fig. 5. Dieselben Muskeln, von vorn.

Fig. 6. Linke Hälfte des Kehlkopfs desselben Thieres, von innen.
l Rand des Kehlkopf-Eingangs.

m Stimmröhre.

Fig. 7. Zunge, Rand des Zungenbeins und Kehlkopfspalte von *Alligator palpebrosus*.

Fig. 8. Kehlkopfknoerpel desselben, von vorn. Um die Hälfte vergrössert aus einem 6" zum After messenden Exemplar.

o' Fortsatz des Giessbeckenknoerpeles, an welchem sich der *M. dilatator* inserirt.

Fig. 9. Dieselben, von der linken Seite.

Fig. 10. Giessbeckenknoerpel von *Crocodilus biporatus*. Der Ringknoerpel gleicht dem von *Alligator palpebrosus*, der erste Trachealring aber ist schmal, unvollständig und liegt ganz in der vorderen Concavität des untern Randes des Schildringknoerpel, zwischen den absteigenden Seitentheilen.

Fig. 11. Kehlkopfknoerpel des *Rhamphostoma tenuirostre*, von vorn. Stark vergrössert, nach einem jungen Exemplar, einem Geschenz des Herrn Thomas Bell in London, dem ich dafür öffentlich zu danken nicht unterlassen kann.

Fig. 12. Dasselbe Präparat, von der rechten Seite gesehen.

Fig. 13. Giessbeckenknoerpel desselben, isolirt.

Fig. 15. Kehlkopfknoerpel von *Trionyx ferox*, von der linken Seite.

A Naturliche Grösse, von einem Exemplar, dessen Rückenschild 3½" lang ist.

a' Fortsatz des Giessbeckenknoerpel, wie bei den Krokodilen.

Fig. 16. Kehlkopf von *Cinosternon clausum* von vorn.

Fig. 17. Derselbe von hinten.

Fig. 18. Kehlkopfknoerpel und erster Trachealring von *Emys lutescens*, von vorn.

Fig. 19. Dieselben, von hinten.

In beiden Figuren bezeichnet β den Schilddrüsenknoerpel.

x Knoerpelstücke zwischen den hintern Rändern des Schildecknperel, lose in der fibrösen Haut.

Fig. 20. Kehlkopfknoerpel von *Emys europaea*, von der linken Seite.

Fig. 21. Schildringknoerpel derselben von vorn.

Fig. 22. Hinterer Rand der Zunge und Kehlkopfspalte von *Testudo elephantopus*.

l' *Ligamentum arygletticum*.

l" Theil des Randes des Stimmladenengangs, welcher vom Giessbeckenknoerpel gestützt ist.

Fig. 23. Kehlkopfknoerpel desselben Thieres von vorn.

Fig. 24. Dieselben, von hinten.

Fig. 25. Zungenbein und Kehlkopfmuskeln desselben.

Fig. 26. Zunge, häutige Epiglottis (zurückgezogen) und Kehlkopfspalte von *Chelonia Midas*. Die Kehlkopfspalte ist theils nach hinten, theils nach oben gerichtet. Die vorderste Spitze derselben ist nur durch gewaltiges Herabdrücken der Zunge sichtbar.

x Spitze, harte Warzen, welche die vordere Wand des Schlundes einnehmen.

Fig. 27. Kehlkopfknoerpel desselben Thiers, von vorn.

Fig. 28. Dieselben von hinten.
Fig. 29. Dieselben von der rechten Seite. In diesen 3 Figuren bedeutet

\(\beta\) den Schildknorpel.

\(\gamma\) dessen hintere Spitze.

\(d\) Ringknorpel.

\(d'\) Der obere, nach hinten umgebogene Fortsatz desselben.

\(g\) Longitudinaler Vorsprung im Innern des Kehlkopfs.

\(d'\) Fortsatz des Giessbeckenknorpels, an welchen sich der \textit{M. dilatator} befestigt.

Fig. 30. Schildringknorpel von \textit{Sphargis mercurialis}, von vorn.

Fig. 31. Derselbe, von hinten.

In Figur 32—34 bezeichnet

\(A\) das Mittelstück des Schildknorpels.

\(D\) den \textit{Processus epiglotticus}.

\(C\) die Seitenstücke des Schildknorpels, welche dann an den Ringknorpel übergehen.

\(E\) den Körper des Ringknorpels.

\(F\) die Giessbeckenknorpel.

\textbf{Fig. 32.} Kehlkopfknorpel des Huhns von hinten gesehen; das eine Seitenstück ist hinten aus seiner Verbindung mit dem gleichnamigen der andern Seite gelöst und nach aussen umgeklappt, um den ganzen Ringknorpel von innen zu zeigen.

\textbf{Fig. 33.} Kehlkopfknorpel von \textit{Loxia curvirostris}. Der eine Seitentheil des Schildknorpels ist aus seiner Verbindung mit demselben gelöst und nebst dem andern Seitentheil und dem Körper des Ringknorpels nach aussen umgelegt.

\textbf{Fig. 34.} Schildknorpel des Storchs, von vorn gesehen, hinten geöffnet und ausgebreitet.

\(B\) Rest von Knorpel zwischen der mittlern und seitlichen Knochenplatte.
LEIPZIG, Druck von J. B. Hirschfeld.